• No results found

A Virtual synchronous machine implementation for distributed control of power transformers in SmartGrids

N/A
N/A
Protected

Academic year: 2022

Share "A Virtual synchronous machine implementation for distributed control of power transformers in SmartGrids"

Copied!
18
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

Electric Power Systems Research

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / e p s r

A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids

Salvatore D’Arco

a

, Jon Are Suul

a,b,∗

, Olav B. Fosso

b

aSINTEFEnergyResearch,7465Trondheim,Norway

bDepartmentofElectricPowerEngineering,NorwegianUniversityofScienceandTechnology,7495Trondheim,Norway

a r t i c l e i n f o

Articlehistory:

Received1February2014

Receivedinrevisedform18October2014 Accepted3January2015

Availableonline2February2015

Keywords:

Distributedgeneration Energyconversion Inertiaemulation Powerelectroniccontrol Small-signalstability VirtualSynchronousMachine

a b s t r a c t

Theongoingevolutionofthepowersystemtowardsa“SmartGrid”impliesadominantroleofpower electronicconverters,butposesstrictrequirementsontheircontrolstrategiestopreservestabilityand controllability.Inthisperspective,thedefinitionofdecentralizedcontrolschemesforpowerconverters thatcanprovidegridsupportandallowforseamlesstransitionbetweengrid-connectedorislanded operationiscritical.Sincethesefeaturescanalreadybeprovidedbysynchronousgenerators,theconcept ofVirtualSynchronousMachines(VSMs)canbeasuitableapproachforcontrollingpowerelectronics converters.ThispaperstartswithadiscussionofthegeneralfeaturesofferedbytheVSMconceptin thecontextofSmartGrids.AspecificVSMimplementationisthenpresentedindetailtogetherwithits mathematicalmodel.Theintendedemulationofthesynchronousmachinecharacteristicsisillustrated bynumericalsimulations.Finally,stabilityisassessedbyanalysingtheeigenvaluesofasmall-signal modelandtheirparametricsensitivities.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Theincreasingpenetrationofpowergenerationfromrenewableenergysourcesandthetransitionfromacentralizedpowerproduction modeltodistributedgenerationareexpectedtoposeseriouschallengestothedevelopmentandoperationoffuturepowersystems.This tendencyisastrongmotivationbehindtheparadigmshiftfromthetraditionalpowersystemarchitecturetowardsanapproachensuring moreflexibilityandcoordinationbetweenthegenerationunitsandloadsthatispromisedby“SmartGrids”[1].Atthesametime,theshare oftheelectricpowertransferredthroughthepowersystemwhichisprocessedbyatleastonepowerelectronicconversionstageinthe pathfromprimaryenergyconversiontofinalconsumptioniscontinuouslyincreasing.Alreadyin2007,itwasestimatedthatthisshare wouldreach80%around2015[2],andevenifthedevelopmenthasbeenslightlyslower,suchahighshareofpowerelectronicconversion isexpectedtobeexceededduringthecomingyears.Thus,powerelectroniccontrolwillhaveacrucialroleintheemergingSmartGrid scenario,asthepresenceofpowerconvertersinthepowersystemandtheirimpactonglobalstabilityandcontrollabilitycontinuesto increase.

AlthoughtheongoingSmartGriddevelopmentspointtowardsanincreasinglevelofcommunicationandintegrationbetweenvarious elementsofthepowersystem,distributedarchitectureswithlocalprimarycontrolofconverterscombinedwithcentralizedsecondary controlseemtobeanappropriateapproachforoptimizingsteady-stateoperationwhileensuringimmediateresponsetotransientevents.

Thus,converterunitsshouldbeabletoreactautonomouslytoabruptchangesinthepowersystemoperatingconditions,whilecomplying onalongertimescalewiththeset-pointsandservicerequirementsrequestedbythesystemoperatorthroughexternalcommunication.

Inclassicalpowersystems,theSynchronousMachine(SM)withspeedgovernorandexcitationcontroloffersfavourablefeaturesto supportthesystemoperationwithinadistributedcontrolscheme.Indeed,SMscontributetothesystemdampingthroughtheirinertia, participateintheprimaryfrequencyregulationthroughthedroopresponseofthespeedcontroller,andprovidelocalcontrolofvoltageor reactivepowerflow.Thesecapabilities,andespeciallytheinertialanddampingresponsecommontoallSMs,arenotinherentlyofferedby thepowerelectronicsinterfacescommonlyadoptedfortheintegrationofrenewableenergysources.Adistributedmodelforproduction

Correspondingauthorat:SINTEFEnergyResearch,7465Trondheim,Norway.Tel.:+4795910913;fax:+4773594279.

E-mailaddress:Jon.A.Suul@sintef.no(J.A.Suul).

http://dx.doi.org/10.1016/j.epsr.2015.01.001

0378-7796/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

andlocalcontrolisalsoopeningthepossibilityofislandedoperation,whichisinherentlyfeasiblewithoneormorecontrollableSMsin theislandedarea.Suchislandingoperationisusuallymorecomplextoachievewithpowerconverterinterfacesdesignedforintegration withalarge-scalepowersystem.

Powerfrommanytraditionallarge-scalegenerationfacilitiesiscurrentlybeingreplacedbydistributedgenerationcapacityfromwind powerandphotovoltaics.Thetraditionalcontrolstructuresimplementedinthepowerconvertersfortheseapplicationsrelyonthesyn- chronizationtoastablegridfrequencysupportedbylargerotatinginertiasandarenotinherentlysuitableinaSmartGridcontext.Thus, fromanimplementationperspective,significantresearcheffortsarestilldevotedtowardsdevelopmentofcontrolschemesforpower electronicconvertersexplicitlyconceivedtoaddresstheconditionsemerginginfutureSmartGrids.GiventheinherentbenefitsoftheSMs outlinedabove,acaptivatingapproachisthecontrolofpowerelectronicconverterstoreplicatethemostessentialpropertiesoftheSM andbythatgainequivalentfeaturesfromafunctionalpointofview.Thus,severalalternativesforprovidingauxiliaryserviceslikereactive powercontrol,dampingofoscillationsandemulationofrotatinginertiawithpowerelectronicconvertershavebeenproposed[3–8].Some ofthesecontrolstrategiesareexplicitlydesignedtomimicthedynamicresponseofthetraditionalSM,andcanthereforebeclassifiedin broadtermsasVirtualSynchronousMachines(VSM).

Duringthelastdecade,severalconceptsforVSMshavebeenpresentedwithdifferentnamesanddifferentpracticalimplementations [4,8–12].Thefirstreviewstudiesprovidinganoverviewofimplementationshavebeenrecentlypublishedin[10,13],withanattemptto defineaclassificationframeworkpresentedin[10].Thereviewin[10]alsohighlightshowsomeimplementationsofferonlypartiallythe benefitsoftheSMswhileonlyafewcanensurefeaturesasislandoperationofsingleormultipleunits.

MostpreviousstudiesofVSM-basedcontrolstrategieshavepresentedparticularimplementationschemeswhichhavebeenverified bytime-domainsimulationsand/orlaboratoryexperiments.Afirststudythatincludeddetailedmodellingandsmall-signalstabilityof aparticularVSMimplementationwaspresentedin[14].However,thismodelwasmainlydevelopedfortuningoftheconvertercontrol loopsanddidnotconsidertheprimarypower-frequencycontrolorthedynamicsofthegridfrequencydetectionneededtoensurean implementationoftheVSMdampingeffectthatadaptstovariationsinthegridfrequency.AVSMsystemmodeladdressingalsothese issueswasrecentlypresentedin[15].

ThispaperincludesacomprehensivetreatmentofaparticularVSMimplementation,startingfromadiscussionofthecomparative advantagesofferedbytheVSMconceptinthecontextofSmartGridsinabstractterms.ThenabriefoverviewoftheVSMdevelopmentstatus isoffered,withthepurposeofidentifyinggeneralpreferencesforselectingspecificimplementationsforfutureSmartGridapplications.

TheselectedimplementationisbasedonaninternalrepresentationoftheSMinertiaanddampingbehaviourthroughareducedorder swingequation,togetherwithcascadedvoltageandcurrentcontrollersforoperatingaVoltageSourceConverter(VSC),basedonthe generalschemefrom[15].Thepaperderivesstep-by-stepadetailednonlinearmathematicalmodelforthisVSMimplementation,and acorrespondingsmallsignalmodelinordertoapplylinearanalysistechniquestothesystemintheperspectiveofstabilityassessment andcontrollertuning.Theeffectofsystemparametersonthepolesofthelinearizedsystemmodelisalsoanalyzedbycalculatingthe parametricsensitivitiesofthesystemeigenvalues.ThefeaturesandperformanceoftheinvestigatedVSManditslinearizedsmall-signal modelisverifiedwithreferencetoafewselectedcasesbynumericalsimulations.

2. ApplicationofVirtualSynchronousMachinesintheSmartGridcontext

Powergenerationfromdistributedrenewableenergysourceslikewindandphotovoltaicpowerplantsisusuallyconnectedtothe powergridthroughactivelycontrolledpowerelectronicconverters,andsimilarinterfacesareappliedforenergystoragesystemsandan increasingshareofcontrollableloads.Theconventionalschemeforsuchgridconnectedpowerconvertersisbasedoncurrentcontrolled VoltageSourceConverters(VSCs),whicharesynchronizedtothemeasuredgridvoltagethroughaPhaseLockedLoop(PLL)[16].This approachusuallyrequiresarelativelystronggridwiththepresenceofunitsthatcanmaintainandstabilizethegridfrequencyandvoltage.

EvenifauxiliaryserviceslikefrequencyandvoltagesupportcanbeprovidedbycurrentcontrolledVSCs,thisfunctionalitymustbeadded throughadditionalouterloopcontrollerswhicharenotinherentlyapplicableforoperationinislandedmode[17].Althoughthisapproach canbesuitableforarelativelylowpenetrationofgridconnectedconverters,itdoesnotseemsustainableforoperationinalongterm SmartGridperspectivewiththeexpecteddominantpresenceofpowerelectronicconversionunitsandahighdegreeofflexibilityinthe networkconfigurations.

2.1. ChallengesforpowerconvertercontrolinfutureSmartGrids

Inthelastdecade,severalalternativeconceptsandapproachesforcontrolandoperationofpowerconvertersdistributedinthepower systemhaveemerged.Anoticeableexamplefromtheoverallsystemoperationpoint-of-viewistheconceptofVirtualPowerPlants(VPPs) thataimstoaggregategenerationresources,energystoragesandloadsintoclustersthatcanbecontrolledbythedistributionsystem operatorinasimilarwayastraditionalpowerplants[18,19].SuchVPPsshouldcoordinatethecontrollableunitswhileensuringsupplyto theuncontrolledloadsinthesystem,butmustalsobeabletosupplyauxiliaryserviceslikecontrolofvoltageorreactivepowerflowand supportthefrequencyregulationofthesystem.Insmallisolatedpowersystems,orincasepartsofthedistributionsystemshouldbeable tooperateinislandedmode,thegenerationunitsaggregatedtogetherinoneVPPmustalsoensureasufficientsysteminertiatokeepthe systemstablewhilemaintainingthepowerbalancewithoutlargefrequencydeviations.TheVPPconceptscurrentlyunderdevelopment arecapableofprovidingfrequency-activatedpowersupporttothesystemwithinafewseconds,andcanthereforeensurethesteady-state powerbalance[20].However,afasterresponseisrequiredforensuringaninertia-basedpower-frequencybalancethatwillbeableto keepthesystemstableintransientconditions.Asmentioned,suchapower-frequencyresponseisanaturalfeatureoftraditionalSMs whichisnotinherentlypresentinthecurrentcontrolledVSCsusuallyappliedforintegratingrenewablesourcestothegrid.SMsofferalso additionaladvantagesasautomaticsynchronizationandpowersharinginresponsetochangesintheoperatingconditions.

FromtheseconsiderationsitappearsthataSmartGridcanrepresentachallengingenvironmentforpowerconvertercontrolschemes, especiallyduetothepossiblelargepenetrationofpowerelectronicsandthevariabilityoftheoperatingconditions.Indeed,alargepen- etrationofconverter-interfacedunitswillcorrespondtoalowerlevelofphysicalinertiathanintraditionalpowersystemdominatedby

(3)

largesynchronousmachines,andincertainconditionsitcanevenbenecessarytooperatepurepowerelectronic,inertia-less,systems.

ConsideringthataflexibleSmartGridframeworkcanresultinmorefrequentreconfigurationsofthepowersystem,withcorresponding variationsinequivalentgridimpedanceandthepossibilitytooperatepartsofthesystemasgroupsofelectricalislands,thevariabilityof theconditionscanintroduceafurtherdimensionofcomplexity.Thiscanalsoleadtolargerandmorefrequenttransientsandcorresponding requirementsforthecontrolsystemstomaintainindividualstableoperationaswellascontributingtothesystemstabilityinawiderange ofoperatingconditions.Thedesignofpowerelectroniccontrolschemesshouldcopewiththesechallengesandpreferablymitigatetheir effects.

OneofthegeneralcharacteristicsoftheemergingSmartGridscenarioisthepresenceofacommunicationinfrastructurethatcanincrease thevolumeofsignalinteractionbetweencontrollableunitsinthepowersystemandfacilitatetheircoordination.Thiscanleadtoawide rangeofoptionsforcentralizedcontrolschemes,likethementionedconceptofVPPs,wherereferencesaredeterminedbyacentralized controlunitanddistributedtotheindividualconverters.However,itshouldbenotedthatreducingthenecessityofcommunicationbetween theunits,especiallyduringtransients,canincreasetherobustnessofthesystemandreducetherisksintheeventoftemporaryunavailability ofthecommunicationinfrastructure.Thus,distributedcontrolconceptswhereindividualunitscanautonomouslydefinetheirtransient responsebasedonlocalmeasurementsarestillrelevant.Moreover,decentralizedschemeswhereonlysteady-statereferencesorset-points aredistributedfromacentralizedsystemcontrollercanlowertherequirementsintermsofbandwidthandlatenciesforthecommunication infrastructure,resultinginlowerinstallationandoperationcosts.Multipleexamplesofpossiblesolutionsfordecentralizedcontrolofpower electronicconvertercanbefoundinthelargeliteratureonisolatedMicroGrids[17,21,22]althoughanexhaustiveanalysisisbeyondthe scopeofthispaper.However,notalloftheseschemesaresuitableforSmartGridapplicationswheretheconverterareexpectedtooperate mostofthetimeingridconnectedmode.Itshouldalsobementionedthatmostcontrolschemesthatallowforbothgridconnectedand stand-aloneoperationwhilealsomaintainingsomedecentralizedcontrolfeatures,tendtobefairlycomplicatedsincetransitionsbetween thesetwomodesusuallyrequireareconfigurationofthecontrolstructure.

2.2. GeneralcharacteristicsofVSMs

IntheemergingSmartGridcontext,theVSMconceptcanofferabasisforrealizingflexibledecentralizedconvertercontrolschemesthat canoperatebothingridconnectedandislandedconditions,andthatcanalmostseamlesslyswitchbetweenthecorrespondingoperating modes.FurthermoretheinherentinertialcharacteristicoftheVSMcanprovideservicesasfrequencysupportandtransientpowersharing asprimarycontrolactions.Theseareindeedbasedonlyonlocalmeasurementanddonotdependonexternalcommunicationsasintypical alternativeschemes.Still,thereisnoconflictbetweenthislocalcontrollabilityandtheabilitytooperateinahierarchicalstructurewhile followingexternalreferencesandset-pointsprovidedbyacentralizedcontrollerforoptimizingthesystemoperation.Moreover,afurther advantageoftheVSMapproachliesinitsconceptualsimplicity,duetotheimmediateandintuitivephysicalinterpretationofitsbehaviour withanalogytothecorrespondingbehaviourofaphysicalmachine.

ThedominantbehaviourofSMsintermsofinertiaresponseanddampingcanbemodelledbythetraditionalswingequation[23].

Consideringthesegeneralcharacteristics,severalcontrolstrategieshavebeendevelopedforallowingpowerelectronicconvertersto providesyntheticorvirtualinertiatothepowersystem,andhavebeenproposedforavarietyofapplicationslikeforinstancewind turbines,energystoragesystemsandHVDCtransmissionschemes[3–14,24–26].Someofthesecontrolmethodsprovideasynthetic inertialresponsetovariationsinthegridfrequencyandonlyafewaimstoexplicitlyreplicatethefeaturesofthetraditionalSMs.However, emulationoftheinertiaanddampingeffectsrequiresanenergybufferwithsufficientcapacitytorepresenttheenergystorageeffectof theemulatedrotatinginertiaavailable.Thus,theamountofvirtualinertiathatcanbeaddedtothesystembyasingleVSMunitwillbe limitedbytheDC-sideconfigurationandbythecurrentratingoftheconverter.

ThecurrentstateoftheartontheVSMconcepthasbeenpresentedin[10,13].Thesereviewsidentifythatsomeoftheimplementations proposedasVSMsdonotexploitthefullpotentialoftheconceptbecausetheystillrelyonaPLLfordetectingthegridvoltagephaseangle, thegridfrequencyanditsderivative,thusrequiringthepresenceofrotatinginertiainthegrid.Otherproposedimplementationsofthe VSMconceptarebasedonthesimulationofaninternalmathematicalSMmodelinsidethecontrolsystemprovidingavoltagereference outputforthePWM[9].However,directopenloopPWMsignalgenerationfromthesevoltagereferencespreventsthepossibilityto explicitlyembedthelimitationsandcontrolledsaturationsofvoltagesandcurrentsthatarenormallyrequiredasprotectivefunctionsfor safeoperationofpowerelectronicconverters.Theseprotectivefunctionscanbeeasilyincludedinacascadedcontrolscheme[10,17,27,28]

wheretheoutputfromtheVSMinertiaemulationisusedasreferenceforavoltagecontrolloopcascadedwithaninternalcurrentcontrol loop.Numerically,thisapproachissufficientlyrobustforpracticalimplementationsandwillinthefollowingbeassumedasthereference VSMscheme,elaboratedfrompreviousstudiesin[14,15].ItcanalsobenotedthattheimplementationofaVSMbasedontheswing equationprovidingreferencesforoperationoftheconverter,undercertainconditionshasbeenshowntobeequivalenttothefrequency- droop-basedcontrolstrategiesfirstdevelopedforUninterruptablePowerSupply(UPS)systemsandMicroGrids,asdemonstratedin[10,29].

However,theinterpretationoftheparametersinaVSMapproachseemstobesimplerandmoreintuitivethantheequivalentparameters inthecommonlyappliedMicroGridschemesand,thus,preferable.

3. MathematicalmodeloftheVSMreferenceimplementation

ThissectiondescribesthecontrolschemefortheselectedVSMreferenceimplementation,consideringeachfunctionalblock,andderives thecorrespondingmathematicalmodel.

3.1. Controlsystemoverview

AnoverviewofthestudiedVSMconfigurationisshown inFig.1,wherea VSCisconnectedtoa gridthroughanLCfilter.Inthe following,theswitchingeffectsoftheVSCareneglectedandanidealaveragemodelisassumedformodellingtheconverter.Furthermore, noapplication-specificconstraintsoftheDC-sideoftheVSCareconsideredand,thus,modellingandcontroloftheenergysourceorstorage ontheDCsideoftheconverterisnotfurtherdiscussed.

(4)

Fig.1.OverviewofinvestigatedsystemconfigurationandcontrolstructurefortheVirtualSynchronousMachine.

TheVSM-basedpowercontrolwithvirtualinertiaprovidesfrequencyandphaseanglereferencesωVSMandVSMtotheinternalcontrol loopsforoperatingtheVSC,whileareactivepowercontrollerprovidesthevoltageamplitudereferencevˆr.Thus,theVSMinertiaemulation andthereactivepowercontrollerappearasouterloopsprovidingthereferencesforthecascadedvoltageandcurrentcontrollers.APLL detectstheactualgridfrequency,butthisfrequencyisonlyusedforimplementingthedampingtermintheswingequation.Thus,the operationoftheinnerloopcontrollersdoesnotrelyonthePLLasinconventionalVSCcontrolsystems,butonlyonthepower-balance-based synchronizationmechanismoftheVSMinertia.

3.2. Modellingconventions

InFig.1,uppercasesymbolsrepresentphysicalvaluesoftheelectricalcircuit.Thecontrolsystemimplementationandthemodelling ofthesystemarebasedonperunitquantities,denotedbylowercaseletterswherethebasevaluesaredefinedfromtheapparentpower ratingandtheratedpeakvalueofthephasevoltage[30].

Themodelling,analysisandcontroloftheelectricalsystemisimplementedinSynchronousReferenceFrames(SRFs).Thetransformation fromthestationaryreferenceframeintotheSRFsarebasedontheamplitude-invariantParktransformation,withthed-axisalignedwith avoltagevectorandtheq-axisleadingthed-axisby90[30].Thus,themagnitudeofcurrentandvoltagevectorsatratedconditionsis 1.0pu.

Wheneverpossible,SRFequationsarepresentedincomplexspacevectornotationas:

x=xd+j·xq (1)

Thus,activeandreactivepowerscanbeexpressedoncomplexorscalarformas:

p=Re(v·i)=vd·id+vq·iq

q=Im(v·i)=−vd·iq+vq·id

(2) ThecurrentdirectionsindicatedinFig.1resultinpositivevaluesforactiveandreactivepowersflowingfromtheconverterintothe grid.

3.3. Systemmodelling

Inthefollowingsub-sections,theimplementationofeachfunctionalblockoftheVSM-basedcontrolandthemathematicalmodelsof allsystemelementsfromFig.1arepresentedasabasisfordevelopinganon-linearmodelofthesystem.Thissystemmodelwillalsobe usedtoestablishalinearizedsmall-signalstate-spacerepresentation.

3.3.1. VSMinertiaemulationandactivepowerdroopcontrol

Theemulationofarotatinginertiaandthepower-balancebasedsynchronizationmechanismsofthisvirtualinertiaisthemaindifference betweentheinvestigatedVSMcontrolstructureandconventionalcontrolsystemsforVSCs.TheVSMimplementationinvestigatedinthis caseisbasedonaconventionalswingequationrepresentingtheinertiaanddampingofatraditionalSM[10,14].Theswingequationused fortheimplementationislinearizedwithrespecttothespeedsothattheaccelerationoftheinertiaisdeterminedbythepowerbalance accordingto:

VSM dt =pr

Ta − p Ta−pd

Ta

(3) Inthisequation,pr*isthevirtualmechanicalinputpower,pisthemeasuredelectricalpowerflowingfromtheVSMintothegrid,and pdisthedampingpower,whilethemechanicaltimeconstantisdefinedasTa(correspondingto2HinatraditionalSM).Theperunit mechanicalspeedωVSMofthevirtualinertiaisthengivenbytheintegralofthepowerbalancewhilethecorrespondingphaseangleVSMis givenbytheintegralofthespeed.AblockdiagramshowingtheimplementationoftheVSMswingequationisshownontherightinFig.2.

(5)

Fig.2.VirtualSynchronousMachineinertiaemulationwithpower-frequencydroop.

TheVSMdampingpowerpd,representingthedampingeffectofatraditionalSM,isdefinedbythedampingconstantkdandthedifference betweentheVSMspeedandtheactualgridfrequency.Thus,anestimateoftheactualgridfrequencyisneededfortheVSMimplementation.

Asindicatedinthefigure,thefrequencyestimateisinthiscaselabelledasωPLLandisprovidedbyaPLL.

Anexternalfrequencydroop,equivalenttothesteady-statecharacteristicsofthespeedgovernorforatraditionalsynchronousmachine, isincludedinthepowercontroloftheVSMasshownintheleftpartofFig.2.Thispower-frequencydroopischaracterizedbythedroop constantkωactingonthedifferencebetweenafrequencyreferenceωVSMandtheactualVSMspeedωVSM.Thus,thevirtualmechanical inputpowerpr*totheVSMswingequationisgivenbythesumoftheexternalpowerreferenceset-point,p*,andthefrequencydroop effect,asshownontheleftofFig.2.

FormodellingtheVSMinaSRF,thephaseangleoftheVSMingridconnectedmodeshouldbeconstantundersteady-stateconditions andshouldcorrespondtothephasedisplacementbetweenthevirtualpositionoftheVSMinternalvoltageandthepositionofthegrid voltagevector.SinceonlythedeviationoftheVSMspeedfromtheactualgridfrequencyshouldbemodelledtoachievethis,anewset ofvariablesrepresentingthespeeddeviationıωVSMandthecorrespondingphaseangledifferenceıVSMisintroduced.Thus,thepower balanceoftheVSMinertiacanbeexpressedby(4),whiletheVSMphasedisplacementisdefinedby(5):

dıωVSM dt =p

Ta− p

Ta−kdVSM−ωPLL)

Ta −kωVSM−ω)

Ta (4)

VSM

dt =ıωVSM·ωb (5)

SincetheVSMspeedinsteadystatewillbecomeequaltothegridfrequencyωg,thefrequencydeviationıωVSMwillreturntozerounder stablegridconnectedoperation.

TheactualperunitspeedoftheVSMshownintheblockdiagramofFig.2canbeexpressedfromthespeeddeviationıωVSMresulting from(4)andthegridfrequencyωgasgivenby(6).ThecorrespondingVSMphaseangleVSMisthendefinedby(7)

ωVSM=ıωVSMg (6)

dVSM

dt =ωVSM·ωb (7)

Thephase angleVSMwillthenbecomeasaw-toothsignalbetween0and2␲,whichisthephaseanglethatwillbeusedforthe transformationbetweentherotatingreferenceframedefinedbytheVSMinertiaandthethree-phasesignals,asindicatedinFig.1.

3.3.2. Reactivepowerdroopcontroller

Thedroop-basedreactivepowercontrollerappliedinthiscaseissimilartothecontrollerscommonlyappliedinmicrogridsystems [17,27].Thevoltageamplitudereferenceˆvrusedfortheinnerloopvoltageandcurrentcontrolisthencalculatedby(8)whereˆvisthe externalvoltageamplitudereferenceandq*isthereactivepowerreference.Thegainkqisthereactivepowerdroopgainactingonthe differencebetweenthereactivepowerreferenceandthefilteredreactivepowermeasurementqm.Thestateofthecorrespondingfirstorder lowpassfilterappliedinthiscaseisdefinedby(9),whereωfisthecut-offfrequency.Ablockdiagramoftheresultingcontrolstructureis showninFig.3:

vˆr∗=vˆ+kq(q−qm) (8)

dqm

dt =−ωf·qmf·q (9)

3.3.3. Referenceframeorientations

ThesynchronizationoftheVSMcontrolsystemtothegridisbasedonthephaseangleorientationofthevirtualrotoroftheVSM,and thephaseangleVSMisusedinthetransformationsbetweenthestationaryreferenceframeandtheVSM-orientedSRF.Thus,thepower

Fig.3. Reactivepowerdroopcontroller.

(6)

α β

vg

δθ

VSM

vo

q

ω

VSM

ω

b , d

gd

v

θ

VSM

θ

PLL

δθ

PLL

, gq

v

ω

g

ω

b

Fig.4. VectordiagramdefiningtheSRFandvoltagevectororientations.

balanceoftheVSMswingequationwillensurethesynchronizationtothegridvoltagewithouttheneedforatraditionalPLL.SincetheVSM- orientedSRFinsteadystaterotateswiththesamefrequencyasthegridvoltage,thisphaseanglewillbecontinuouslyincreasingbetween 0and2␲,asindicatedinthevectordiagramshowninFig.4.Accordingtoitsdefinition,thephaseangleıVSMisinsteadrepresentingthe phasedifferencebetweentheVSMSRForientationandtherotatinggridvoltagevector,asalsoindicatedinFig.4.

TheVSM-orientedSRFisusedforbothcontrolandmodellingofthesystem,andtherefore,alsothemodeloftheelectricalsystem willberepresentedinthisreferenceframe.Thishassignificantadvantagesforthemodellingofthesystem,sincemultiplereference frametransformationsbetweenalocalSRFforcontrollerimplementationandaglobalSRFforelectricalsystemmodellingcanbeavoided.

Consideringtheamplitudeoftheequivalentgridvoltagevˆgtobeknown,thevoltagevectorvgintheVSM-orientedSRFcanthenbe expressedby(10):

vgvge−jıVSM (10)

Bythepower-balance-basedsynchronizationeffectoftheVSMswingequation,thecontrolsystemdefinesitsownreferenceframe orientationwithrespecttothegridvoltage.Inprinciple,noadditionalreferenceframesareneededtomodelthesystemfromFig.1.

However,sinceanestimateforthegridfrequencyisusedtoimplementtheVSMdampingeffect,aPLLoperatingonthemeasuredvoltage voatthefiltercapacitorsisimplementedaspartofthecontrolsystem.Thus,thisPLLwillestablishitsownSRFalignedwiththevoltage vectorvo.ThephaseangledisplacementofthisPLLwithrespecttothegridvoltagecanthenbedefinedasıPLLinasimilarwayasfor thephaseangledisplacementoftheVSM.ThedetailedimplementationofthePLLwillbepresentedinthefollowingsub-section,butthe definitionofitssteadystatephasedisplacementıPLLwithrespecttothegridvoltage,andthecorrespondingphaseanglePLLbetween therotatingPLL-orientedSRFandthestationaryreferenceframe,isshowninFig.4.

AccordingtothedefinitionsindicatedinFig.4,thephaseanglebetweentheVSMandPLLorientedSRFswillbedefinedbythedifference betweentheVSMand PLLangles.FormodellingofthePLLinitsownreferenceframe,thevoltagevoatthefiltercapacitorscanbe transformedfromtheVSM-orientedreferenceframetothePLL-orientedreferenceframeby:

vPLLo =vVSMo ej(ıPLLıVSM) (11)

3.3.4. Phaselockedloop

ThePhaseLockedLoop(PLL)appliedinthiscasefortrackingoftheactualgridfrequencyisbasedon[31,32]anditsstructureisshown inFig.5.ThisPLLisusingfirstorderlow-passfiltersontheestimatedd-andq-axisvoltagecomponentsandaninversetangentfunctionto calculatethephaseangleerrorofthePLL.ThisphaseangleerrorePLListheinputtoaPIcontrollertrackingthefrequencyofthemeasured voltage.Forthepracticalimplementation,theestimatedfrequencyωPLListhenintegratedtoobtaintheestimateoftheactualinstantaneous phaseanglePLLusedfortransformationofthevoltagemeasurementsintothePLL-orientedSRF.FormodellingofthePLL,thevoltagevector vointheVSM-orientedSRFmustbetransformedintothePLL-orientedSRFaccordingto(11).

Fig.5.Phaselockedloop.

(7)

Thestatesoftheappliedfirstorderlow-passfiltersinthePLL,definingthefilteredvoltagevPLL,canbeexpressedby(12),wherethe cut-offfrequencyoftheappliedlowpassfiltersisgivenbyωLP,PLL:

dvPLL

dt =−ωLP,PLL·vPLLLP,PLL·voe−j(ıPLL−ıVSM) (12)

TheintegratorstateεPLLofthePIcontrollercanthenbedefinedby:

PLL

dt =tan−1

VPLL,q VPLL,d

(13) InthesamewayasexplainedfortheSRFmodellingoftheVSMswingequation,aspeeddeviationıωPLLwithrespecttothegridfrequency isdefinedforthePLLaccordingto(14).Thecorrespondingphaseangledisplacement,ıPLL,ofthePLListhendefinedby(15):

ıωPLL=kp,PLL·tan−1

VPLL,q VPLL,d

+ki,PLL·εPLL (14)

PLL

dt =ıωPLL·ωb (15)

InaccordancewiththedefinitionsintroducedfortheVSMswingequation,theactualperunitfrequencyωPLLdetectedbythePLLisgiven by(16).ThephaseangleusedintheimplementationofthePLL,fortransformationofthemeasuredthree-phasevoltagemeasurements intothePLL-orientedSRF,isthendefinedbyPLLaccordingto(17):

ωPLL=ıωPLLg (16)

dPLL

dt =ωPLL·ωb (17)

3.3.5. Virtualimpedanceandvoltagecontrollers

AsindicatedinFig.1,thevoltageamplitudereferencevˆrresultingfromthereactivepowerdroopcontrollerinFig.3ispassedthrough avirtualimpedancebeforeitisusedasa referenceforcontrollingthevoltagevoatthefiltercapacitors.Thisvirtualimpedancecan beconsideredasanemulationofthequasi-stationarycharacteristicsofthesynchronousimpedanceina traditionalSM.Thevirtual impedancewillinfluencethesteady-stateanddynamicoperationoftheVSM,anditwillbeshownhowitcanbeusedtoshapethe dynamiccharacteristicsofthesystem.Sincepowerflowingthroughthevirtualinductancewillcauseaphaseangledisplacementbetween thegridvoltageandthevirtualinertiapositionoftheVSM,itwillalsoreducethesensitivityoftheVSMtosmalldisturbancesinthegrid.

Theinfluencefromthevirtualresistancervandinductancelvonthecapacitorvoltagereferencevectorvoisdefinedonbasisofthecurrent ioaccordingto[33,34]:

vo=vˆr−(rv+j·ωVSM·lvio (18)

Theresultingd-andq-axisvoltagecomponentsvo,dandvo,qareuseddirectlyasreferencesforthedecoupledSRFPIvoltagecontrollers asshownintheleftpartofFig.6.

ThedetailedstructureoftheSRFPIcontrollersforthefiltercapacitorvoltageisshowninthemiddleofFig.6,andisproducingthe referencevaluesicvfortheconvertercurrents[27].Thesecurrentreferencescanbeexpressedby(19),wherethePIcontrollergainsare definedbykpvandkiv.Againfactorkffithatcanbesetto1or0isusedtoenableordisablethefeed-forwardofmeasuredcurrentsflowing intothegrid.ItshouldalsobenotedthatthedecouplingtermsofthevoltagecontrollerarebasedontheperunitspeedoftheVSMinertia asdefinedin(6).Thestates␰aredefinedtorepresenttheintegratorsofthePIvoltagecontrollersasgivenby(20):

icv=kpv(vovo)+kiv␰+j·c1·ωVSM·vo+kffi·io (19) d␰

d =vovo (20)

Thecurrentreferencesfromthevoltagecontrollersshouldbelimitedtoavoidover-currentsincaseofvoltagedrops,faultconditions orotherseveretransients.Thisalsoimpliesthatthevoltagecontrollersmustbeprotectedfromwindupconditionsincasethecurrent referencesaresaturated.However,therequiredlimitationsandanti-winduptechniquesfortheinvestigatedVSMschemearesimilarto whatisneededinconventionaldroop-basedcontrolschemeswithcascadedSRFvoltageandcurrentcontrollers,asforinstancediscussed in[28].Sincetheselimitationsarenotinfluencingthedynamicsofthecontrolschemewithinthenormaloperatingrange,furtherdetails willnotbediscussedhere.

3.3.6. Currentcontrollersandactivedamping

TheappliedinnerloopcurrentcontrollersareconventionalSRFPIcontrollerswithdecouplingterms[27,35],asshownintherightside partofFig.6.Theoutputvoltagereferencefromthecontrollerisdefinedby(21),wheretheresultingvoltagereferencefortheconverter isdenotedbyvcv.TheproportionalandintegralgainsofthePIcontrolleraredefinedbykpcandkic,andagainfactorkffvisusedtodisable orenablethevoltagefeed-forwardintheoutputofthecurrentcontrollers.Thestates␥aredefinedtorepresenttheintegratorsofthePI controllersaccordingto(22):

vcv=kpc(icvicv)+kic·␥+j·l1·ωVSM·icv+kffv·vovAD (21) d␥

dt =icvicv (22)

(8)

In(21),thevoltagereferencefortheconverteralsoincludesanactivedampingtermvADdesignedforsuppressingLCoscillationsinthe filter[36].TheimplementationoftheactivedampingalgorithmisshowninFig.7,andisbasedonhighpassfilteringofthemeasuredvoltage vo,obtainedfromthedifferencebetweenvoandthelowpassfilteredvalueofthesamevoltage.Theresultinghighpassfilteredsignalis thenscaledbythegainkADaccordingto(23)andsubtractedfromtheoutputofthecurrentcontrollerstocanceldetectedoscillationsin thecapacitorvoltages:

vAD=kAD(vo−␸) (23)

Thecorrespondinginternalstates␸ofthelowpassfiltersusedfortheactivedampingaredefinedby(24),whereωADisthecut-off frequency:

d␸

dt =ωAD·vo−ωAD·␸ (24)

ForthepracticalimplementationoftheVSCcontrolsystem,thevoltagereferencevcv resultingfromthecurrentcontrollerandthe activedampingisdividedbythemeasuredDC-linkvoltagetoresultinthemodulationindexmasshowntotherightofFig.6.Neglecting theswitchingoperationoftheconverterandanydelayduetothePWMimplementation,theinstantaneousaveragevalueoftheperunit converteroutputvoltageisgivenbytheproductofthemodulationindexandtheactualDC-voltage.Underthisassumption,theoutput convertervoltagewillbeapproximatelyequaltothevoltagereferenceassummarizedby(25)[37]:

m= vcv vDC

, vcv=m·vDCvcvvcv (25)

Thus,theACsideoperationoftheconverterwillbeeffectivelydecoupledfromanydynamicsintheDCvoltage,anditisnotnecessary tofurtherdiscussormodeltheDCsideoftheconverterforachievinganaccuraterepresentation ofthedynamicsontheACside.It shouldbenotedthattheactualsourceorstorageunitconnectedtotheDClinkoftheconvertermightstillimposerestrictionsonthe allowablepowerexchangeduringvariousoperatingconditions.However,tomaintaingeneralityandavoiddetaileddiscussionofparticular application-specificlimitationsitwillbeassumedthatthepowerrequestedfromtheACsideisalwaysavailableattheDClinkofthe converter.

3.3.7. Electricalsystemequations

TheelectricalsystemincludedinthemodelaccordingtoFig.1consistsofasetoffilterinductorsconnectedtotheconverter,ashunt capacitorbankrepresentingthecapacitanceoftheLCfilter,andaThéveninequivalentofthegrid.Thissimplestructureisassumedto achieveasimplemodelthatmainlyincludesthedynamicsoftheconvertercontrolsystemanditsinteractionwiththeequivalentgrid voltage.However,amorecomplexACgridtopologycanbeeasilyincludedinthemodelforbothsimulationsandanalysis.Consideringan instantaneousaveragemodeloftheconverter,theSRFstatespaceequationsoftheelectricalsystemcanbeestablishedasgivenby(26) [27,35]:

dicv dt =ωb

lf vcv−ωb lf vo

r

lfωb

lf +j·ωgωb

icv dvo

dt = ωb cf icv−ωb

cf ig−j·ωgωb·vo

dio

dt =ωb lg vo−ωb

lg vg

rgωb

lg +j·ωgωb

io

(26)

Intheseequationsicvisthefilterinductorcurrent,vcvistheconverteroutputvoltage,voisthevoltageatthefiltercapacitors,igisthe currentflowingintothegridequivalentandvgisthegridequivalentvoltage.Theinductanceandequivalentresistanceofthefilterinductor isgivenbylfandrlf,thefiltercapacitoriscf,whilethegridinductanceandresistancearegivenbylgandrg.Theperunitgridfrequencyis givenbyωg,whilethebaseangulargridfrequencyisdefinedbyωb.Itshouldbenotedthatthestatespacemodelfrom(26)canrepresent theelectricalsysteminanySRF,butinthiscasethesystemwillalwaysbemodelledintheSRFdefinedbytheVSMswingequation.

Itshouldalsobenotedthatthepresentedmodelonlyrepresentsthecaseofgrid-connectedoperation,whiletheinvestigatedVSM schemeisinherentlysuitableforstand-aloneoperation.Inthiscasetheoperationalfrequencywillonlybedeterminedbytheactualload inthesystem,thepower-frequencydroopgainandthepowerandfrequencyreferencesfortheVSM.Furtherdetailsonmodellingofthe investigatedVSMimplementationinislandedoperation,andcorrespondinganalysisofthedynamiccharacteristicsinstand-alonemode canbefoundin[38].

3.4. Non-linearsystemmodelingrid-connectedoperation

AllequationsneededfordetailedmodellingoftheVSMconfigurationingrid-connectedoperationhavebeenpresentedintheprevious sub-sections,andcanbereducedtoamodelonstate-spaceformwith19distinctstatevariablesand6inputsignals,withthestatevector xandtheinputvectorudefinedby(27).Theresultingnon-linearstate-spacemodeloftheoverallsystemisgivenby(28):

x=

vo,d vo,q icv,d icv,q d q io,d io,q ϕd ϕq...

...vPLL,d vPLL,q εPLL ıVSM d q qm ıωVSM ıPLL

T

u=

p q ˆvg ˆv ω ωg

T

(27)

(9)

dvo,d

dt =ωbωgvo,qb

cf icv,d−ωb cf io,d dvo,q

dt =−ωbωgvo,d+ωb

cf icv,q−ωb cf io,q

dicv,d

dt =ωb(kffv−1−kAD−kpckpv)

lf vo,d−ωbcfkpc

lf ωgvo,q−ωb(kpc+rf)

lf icv,dbkic

lf dbkpc(kffi−kpvrv)

lf io,dbkpckpvlv lf ωgio,q

bkAD

lf ϕdbkivkpc

lf d−ωbkpckpvkq

lf qm−ωbicv,qıωVSMbkpckpvlv

lf io,qıωVSM−ωbcfkpc

lf vo,qıωVSMbkpckpvkq

lf qbkpckpv lf ˆv dicv,q

dt = ωbcfkpc

lf ωgvo,d+ωb(kffv1kADkpckpv)

lf vo,q−ωb(kpc+rf)

lf icv,qbkic

lf q−ωbkpckpvlv

lf ωgio,dbkpc(kffi−kpvrv) lf io,q

bkAD

lf ϕqbkivkpc

lf qbicv,dıωVSM−ωbkpckpvlv

lf io,dıωVSMbcfkpc

lf vo,dıωVSM dd

dt =−kpvvo,d−cfωgvo,q−icv,d+(kffi−kpvrv)io,d+kpvlvωgio,q+kivd−kpvkqqm+kpvlvio,qıωVSM−cfvo,qıωVSM+kpvkqq+kpvˆv dd

dt =cfωgvo,d−kpvvo,q−icv,q−kpvlvωgio,d+(kffi−kpvrv)io,q+kivq−kpvlvio,dıωVSM+cfvo,dıωVSM dio,d

dt =ωb

lg vo,d−ωbrg lg

io,dbωgio,qbˆvgcos(ıVSM) lg

dio,q

dt = ωb

lg vo,q−ωbωgio,d−ωbrg

lg

io,qbvˆgsin(ıVSM) lg

d

dt =ωADvo,d−ωADϕdq

dt =ωADvo,q−ωADϕq dvPLL,d

dt =ωLP,PLLvo,dcos(ıPLL−ıVSM)+ωLP,PLLvo,qsin(ıPLL−ıVSM)−ωLP,PLLvPLL,d dvPLL,q

dt =−ωLP,PLLvo,dsin(ıPLL−ıVSM)+ωLP,PLLvo,qcos(ıPLL−ıVSM)−ωLP,PLLvPLL,q

PLL

dt =tan−1

vPLL,q

vPLL,d

VSM

dt =ωbıωVSMd

dt =−vo,d−rvio,d+lvωgio,q−kqqm+lvio,qıωVSM+kqqvq

dt =−vo,q−lvωgio,d−rvio,q−lvio,dıωVSM dqm

dt =−ωfio,qvo,d+ωfio,dvo,q−ωfqm

dıωVSM

dt =−1 Ta

io,dvo,d− 1 Ta

io,qvo,q+kdkp,PLL

Ta

tan1

vPLL,q

vPLL,d

+kdki,PLL Ta

εPLL−kd+kω

Ta

ıωVSM+ 1 Ta

p+kω

Ta

ω−kω

Ta

ωg

PLL

dt =ωbkp,PLLtan1

vPLL,q

vPLL,d

bki,PLLεPLL

(28)

Thesteadystateoperatingpointofthesystemunderanycombinationsofinputsignalscanbefoundbysolvingthisnonlinearsystem modelwithderivativetermssettozero.

3.5. SmallsignalmodelofthereferenceVSM

Sincethestate-spacemodelfrom(28)isnonlinear,classicalstabilityassessmenttechniquesbasedoneigenvaluesarenotdirectly applicable.Thus,inthissection,acorrespondinglinearizedsmall-signalstate-spacemodelisderivedintheformgivenby:

x˙=A· x+B· u. (29)

wheretheprefix denotessmall-signaldeviationsaroundthesteady-stateoperatingpoint[30].Thevaluesofthestatevariablesatthis linearizationpointaredenotedbysubscript‘0’whentheyappearinthematrices.Forconvenienceofnotation,thedynamicmatrixAis expressedthroughfoursub-matricesaccordingto:

x˙1

˙ x2

=

A11 A12 A21 A22

·

x1 x2

+B· u (30)

(10)

whereA11,A12,A13andA22aregivenby(31)–(34),whiletheBmatrixisgivenby(35):

A11=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

0 ωbωg,0 ωb

cf 0 0 0 ωb

cf 0 0 0

ωbωg,0 0 0 ωb

cf 0 0 0 ωb

cf 0 0

ωb(kffv1kADkpc kpv)

lf ωbcf kpcωg,0

lf ωb(kpc+rf)

lf 0 ωbkic

lf 0 ωbkpc(kffikpvrv) lf

ωbkpckpvlvωg,0 lf

ωbkAD

lf 0

ωbcf kpcωg,0 lf

ωb(kffv1kADkpc kpv)

lf 0 ωb(kpc+rf)

lf 0 ωbkic

lf ωbωg kpckpvlv lf

ωbkpc(kffikpvrv)

lf 0 ωbkAD

lf

−kpv cf ωg,0 1 0 0 0 kffikpvrv kpvlvωg,0 0 0

cf ωg,0 −kpv 0 1 0 0 −kpvlvωg,0 kffikpvrv 0 0

ωb

lg 0 0 0 0 0 ωbrg

lg ωbωg,0 0 0

0 ωb

lg 0 0 0 0 ωbωg,0 ωbrg

lg 0 0

ωAD 0 0 0 0 0 0 0 −ωAD 0

0 ωAD 0 0 0 0 0 0 0 −ωAD

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

(31)

A12=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 ωbkivkpc

lf 0 −ωbkpckpvkq

lf

ωb(−lficv,q,0+kpckpvlvio,q,0−cfkpcvo,q,0)

lf 0

0 0 0 0 0 ωbkivkpc

lf 0 ωb(lficv,d,0−kpckpvlvio,d,0+cfkpcvo,d,0)

lf 0

0 0 0 0 kiv 0 −kpvkq kpvlvio,q,0−cfvo,q,0 0

0 0 0 0 0 kiv 0 −kpvlvio,d,0+cfvo,d,0 0

0 0 0 ωbvˆg,0sin(ıVSM,0)

lg 0 0 0 0 0

0 0 0 ωbvˆg,0cos(ıVSM,0) lg

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

(32)

A21=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎣

ωLP,PLLcos(ıPLL,0−ıVSM,0) ωLP,PLLsin(ıPLL,0−ıVSM,0) 0 0 0 0 0 0 0 0

−ωLP,PLLsin(ıPLL,0−ıVSM,0) ωLP,PLLcos(ıPLL,0−ıVSM,0) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 −rv ωglv 0 0

0 −1 0 0 0 0 −ωglv −rv 0 0

−ωfio,q,0 ωfio,d,0 0 0 0 0 ωfvo,q,0 −ωfvo,d,0 0 0

−io,d,0

Ta −io,q,0

Ta

0 0 0 0 −vo,d,0

Tavo,q,0 Ta

0 0

0 0 0 0 0 0 0 0 0 0

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎦

(33)

A22=

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

⎢ ⎢

−ωLP,PLL 0 0 −ωLP,PLL

vo,q,0cos(ıPLL,0ıVSM,0)

vo,d,0sin(ıPLL,0ıVSM,0)

0 0 0 0 ωLP,PLL

vo,q,0cos(ıPLL,0ıVSM,0)

vo,d,0sin(ıPLL,0ıVSM,0)

0 ωLP,PLL 0 ωLP,PLL

vo,d,0cos(ıPLL,0ıVSM,0) +vo,q,0sin(ıPLL,0ıVSM,0)

0 0 0 0 ωLP,PLL

vo,d,0cos(ıPLL,0ıVSM,0) +vo,q,0sin(ıPLL,0ıVSM,0)

0 1

vPLL,d,0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 ωb 0

0 0 0 0 0 0 kq lvio,q,0 0

0 0 0 0 0 0 0 lvio,d,0 0

0 0 0 0 0 0 −ωf 0 0

0 kdkp,PLL

TavPLL,d,0

kdki,PLL

Ta 0 0 0 0 kd+kω

Ta 0

0 ωbkp,PLL

vPLL,d,0

ωbki,PLL 0 0 0 0 0 0

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

⎥ ⎥

(34)

Referanser

RELATERTE DOKUMENTER

Model 1 showed a local minimum appearing around the time when the aerobic power reached steady state for continuous exercise, whereas for Model 2 the alactic energy storage

influenced directly by our actions. More commonly, the actor is influenced indirectly by threats posed against the assets we believe are vital to him. Possible targets may be symbolic

Overall, the SAB considered 60 chemicals that included: (a) 14 declared as RCAs since entry into force of the Convention; (b) chemicals identied as potential RCAs from a list of

Keywords— Fast active power injection/absorption, frequency control, frequency response indicators, low inertia,

Further to the difficulties associated with power transmission over long distances (concerned with the provision of stability, reactive power compensation and voltage control),

In this paper, a distributed control scheme is proposed to coordinate the contribution of wind power plants (WPPs) to mitigate frequency deviations in isolated ac synchronous

This paper investigates the impacts of power control loop and reactive power injection on dq impedance model and low-frequency stability of OWPPs, and presents a low-

This represents a significant difference in terms of power quality, as with active power control, the inertia of the rotor filters the wave power oscillations, and then, the