• No results found

Measurements of four-lepton production at the Z resonance in pp collisions at √s =7 and 8 TeV with ATLAS

N/A
N/A
Protected

Academic year: 2022

Share "Measurements of four-lepton production at the Z resonance in pp collisions at √s =7 and 8 TeV with ATLAS"

Copied!
18
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

Measurements of Four-Lepton Production at the Z Resonance in pp Collisions at ffiffi

p s

¼ 7 and 8 TeV with ATLAS

G. Aadet al.* (ATLAS Collaboration)

(Received 22 March 2014; published 13 June 2014)

Measurements of four-lepton (4l,l¼e;μ) production cross sections at theZresonance inppcollisions at the LHC with the ATLAS detector are presented. For dilepton and four-lepton invariant mass regions mlþl>5GeV and80< m4l<100GeV, the measured cross sections are 7618ðstatÞ 4ðsystÞ 1.4ðlumiÞ fb and1079ðstatÞ 4ðsystÞ 3.0ðlumiÞ fb atpffiffiffis¼7and 8 TeV, respectively. By subtrac- ting the nonresonant4lproduction contributions and normalizing withZ→μþμevents, the branching fraction for theZboson decay to4lis determined to beð3.200.25ðstatÞ0.13ðsystÞÞ×10−6, consistent with the standard model prediction.

DOI:10.1103/PhysRevLett.112.231806 PACS numbers: 13.38.Dg

This Letter presents measurements of the cross sections for the inclusive production of four leptons (4l,l¼e;μ) at theZresonance inppcollisions atpffiffiffis

¼7and 8 TeV using data recorded by the ATLAS detector[1]at the LHC[2]. In the standard model (SM),4lproduction in theZresonance region occurs dominantly via an s-channel diagram such as that shown in Fig. 1(a) where the Z boson decay to charged leptons includes the production of an additional lepton pair from the internal conversion of a virtualZorγ. A small fraction of 4l events is produced in a t-channel process such as that shown in Fig.1(b), which includesZ production with internal conversion of initial-state radia- tion. The process gg→ZðÞZðÞ→4l accounts for only about10−3of the total4levent rate around theZresonance [3]. A resonant peak around theZmass in the4linvariant mass spectrum is observed along with the nearby peak from the Higgs boson decayH→4l[4,5]. A measurement of the4lproduction cross section at theZresonance provides a test of the SM and a cross-check of the detector response to the4l final state from Higgs decays.

Since the interference between the resonant and non- resonant (t-channel and gg) production mechanisms is expected to be small around theZresonance, the branching fraction of the rare decay Z→4l can be determined by subtracting the expected nonresonant 4l contributions from the measured 4l rate. For simplicity, inclusive 4l production around theZresonance, including the nonreso- nant contributions, is denoted as Z→4l from here on, except that the branching fractionΓZ→4lZ refers to the s-channel contribution alone. The CMS Collaboration has observed theZ→4l resonance inpffiffiffis

¼7 TeV data and

determined a branching fraction, summed over the 4e, 4μ, and 2e2μ final states, of ΓZ→4lZ¼ ð4.2þ0.9−0.8ðstatÞ 0.2ðsystÞÞ×10−6, where 80< m4l<100GeV and mll>4GeV for all pairs of leptons [6]. The results presented here include the first cross-section measurement of the4l production at the Z resonance at pffiffiffis

¼8TeV, and a determination ofΓZ→4lZwith improved statistical precision in a final phase-space region defined by the dilepton and four-lepton invariant mass requirements mlþl >5 GeV and 80< m4l<100GeV, where lþl denotes all same-flavor lepton pairs with opposite charge.

The ATLAS detector has a cylindrical geometry[7]and consists of an inner tracking detector (ID) surrounded by a 2 T superconducting solenoid, electromagnetic and had- ronic calorimeters, and a muon spectrometer (MS) with a toroidal magnetic field. The ID provides precision tracking for charged particles for jηj<2.5. It consists of silicon pixel and strip detectors surrounded by a straw tube tracker that also provides transition radiation measurements for electron identification. The calorimeter system covers the pseudorapidity range jηj<4.9. For jηj<2.5, the liquid- argon electromagnetic calorimeter is finely segmented and plays an important role in electron identification.

The MS includes fast-trigger chambers (jηj<2.4) and high-precision tracking chambers coveringjηj<2.7.

(a) (b)

FIG. 1. Examples of (a)s-channel and (b)t-channel Feynman diagrams for4lproduction inppcollisions.

* Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri- bution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

(2)

The data sets for this analysis are recorded using single- lepton and dilepton triggers. The transverse momentum (pT) thresholds of these triggers vary from 20 to 24 GeV for the single-lepton triggers and from 8 to 13 GeV for the dilepton triggers, depending on lepton flavor and data- taking period. The overall trigger efficiency for selected Z→4l events ranges from 94 to 99%.

After removing the short data-taking periods having problems that affect the lepton reconstruction, the total integrated luminosity used in the analysis is 4.5fb−1 at 7 TeV and20.3fb−1 at 8 TeV. The overall uncertainty on the integrated luminosity is 1.8%ffiffiffis [8]and 2.8%[9]for the p ¼7and 8 TeV data sets, respectively.

ThePOWHEGMonte Carlo (MC) program[1012], used to calculate the signal cross sections, includes perturbative QCD corrections to next-to-leading order. The calculation also includes the interference terms between thes-channel and thet-channel as well as the interference terms between the Z and the γ diagrams. The CT10 [13] set of parton distribution functions (PDFs) and QCD renormalization and factorization scales of μR, μF ¼m4l are used. In the mlþl >5GeV and 80< m4l<100GeV phase space, the production cross sections calculated by POWHEG are 53.41.2 fb (45.81.1fb) for the sum of the4eand4μ final states, and51.51.2fb (44.21.1fb) for the2e2μ final state at 8 TeV (7 TeV). The cross sections for4eand 4μare larger than for2e2μdue to the interference between the two same-flavor lepton pairs. The cross-section uncer- tainties reflect theoretical uncertainties from the choice of QCD scales and PDFs. The scales are varied independently from 0.5 to 2.0 times the nominalμRF ¼m4l. The PDF uncertainties are estimated by taking the sum in quadrature of the deviations of the cross section for each PDF error set (52 CT10 eigenvectors varied by one standard deviation) and for an alternative PDF set, MSTW2008 [14], with respect to the nominal one. The expected fraction of 4l events produced via the t-channel process is ð3.350.02Þ% and ð3.900.02Þ% for same-flavor (4e, 4μ) and mixed-flavor (2e2μ) final states, respectively, for both 7 and 8 TeV. Thegg→ZZ→4lprocess is modeled byGG2ZZ[15], and the4levent fraction from this process is calculated to be around 0.1%. The overall nonresonant fraction (fnr) from the t-channel and gg contributions combined is ð3.450.02Þ% and ð4.000.02Þ% for the same-flavor and mixed-flavor final states, respectively. To generate MC events with a simulation of the detector to determine the signal acceptance, POWHEG is interfaced to

PYTHIA6 [16] or PYTHIA8 [17] for showering and hadro- nization and to PHOTOS [18] for radiated photons from charged leptons.

The MC generators used to simulate the reducible background contributions are MC@NLO [19] (to model top productions) and ALPGEN [20] (to model Z boson production in association with jets, referred to as Zþjets). These generators are interfaced to HERWIG [21]

andJIMMY[22]for parton showering and underlying-event simulations. The diboson background processes WZ and Zγ, andZðÞZðÞ →4ldecays involvingτ→e=μþ2ν, are modeled by POWHEG (interfaced to PYTHIA for parton showering) andSHERPA[23].

The detector response simulation [24] is based on the

GEANT4 program[25]. Additional inelasticppinteractions (referred to as pile-up) are included in the simulation, and events are reweighted to reproduce the observed distribu- tion of the average number of collisions per bunch crossing in the data.

The Z→4l event selection closely follows the H→ZZ→4lanalysis[26]with muonpTand dilepton invariant mass requirements loosened to increase the acceptance for theZ→4l process.

Muons are identified by tracks reconstructed in the MS and are matched to tracks reconstructed in the ID (jηj<2.5). The muon momentum is calculated by combin- ing the information from the tracking systems, correcting for the energy lost in the calorimeters. In the region 2.5<jηj<2.7, muons can also be identified by an MS track alone (denoted stand-alone muons). The identified muons described above are required to havepT>4GeV.

In the MS gap region (jηj<0.1) muons are identified by an ID track withpT>15GeV associated with a compat- ible calorimeter energy deposit (denoted calorimeter- tagged muons).

Electrons are reconstructed from energy deposits in the electromagnetic calorimeter matched to a track in the ID [27]. Tracks associated with electromagnetic clusters are fitted using a Gaussian sum filter [28], which allows bremsstrahlung energy losses to be taken into account.

For ffiffiffi ps

¼8TeV data, improved electron discrimination from jets is obtained using a likelihood function formed from parameters characterizing the shower shape and track association, resulting in a reduction of the electron mis- identification rate by more than a factor of two compared to that at 7 TeV. Electron candidates are required to have pT>7GeV and jηj<2.47.

Collision events are selected by requiring at least one reconstructed vertex with at least three charged particle tracks withpT>0.4GeV. If more than one vertex satisfies the selection requirement, the primary vertex is chosen as the one with the highestP

p2T, summed over all tracks associated with the vertex.

In order to reject electrons and muons from jets, only isolated leptons are selected, requiring the scalar sum of the transverse momenta,P

pT, of other tracks inside a cone size ofΔR¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2þ ðΔϕÞ2

p ¼0.2around the lepton to be less than 15% of the leptonpT. In addition, theP

ET deposited in calorimeter cells inside a cone size ofΔR¼ 0.2 around the lepton direction, excluding the transverse energy due to the lepton and corrected for the expected pile- up contribution, is required to be less than 30% of the leptonpT, reduced to 20% for electrons in the 8 TeV data

(3)

set and 15% for stand-alone muons. The impact parameter relative to the primary vertex is required to be less than 3.5 (6.0) standard deviations for all muons (electrons), where the looser electron requirement allows for tails in the electron impact parameter distribution due to bremsstrah- lung in the ID.

Candidate quadruplets are formed by selecting two opposite-sign, same-flavor dilepton (lþl) pairs in an event. The four leptons of a quadruplet are required to be well separated: ΔR >0.1for same-flavor lepton pairs andΔR >0.2foreμpairs. At most one muon is allowed to be a stand-alone muon or a calorimeter-tagged muon.

The two leading leptons must havepT>20and 15 GeV.

The third lepton must have pT>10ð8Þ GeV if it is an electron (muon). One quadruplet is selected for each event, formed from thelþlpair with greatest invariant mass (the leading lepton pair, with massm12) and thelþlpair with the largest invariant mass among the remaining possible pairs (the subleading pair, with mass m34). The dilepton masses must satisfy m12>20GeV and m34>5GeV.

In the4eand4μ channels all thelþl pairs are required to have mlþl >5GeV, to reject events containing J=ψ →lþl decays. The 4l invariant mass is restricted to 80< m4l<100GeV. A total of 21 and 151 Z→4l candidate events are selected in the 7 and 8 TeV data sets, respectively. The distributions of m12, m34, and m4l are shown in Fig. 2. The number of events observed in each channel is shown in TableI, where the labelingllþl0l0 indicates the leading and subleading lepton pairs.

The overall signal selection efficiency is the product of efficiency and acceptance factors, C4l and A4l, respec- tively. The efficiency factorC4l is the ratio of the number of Z→4l events passing the reconstructed event selec- tions to the number in the fiducial region, and is determined using the signal MC samples after the detector simulation.

The fiducial region, defined at the MC generator level using the lepton four-momenta, requires pT>20, 15, 10 (8), 7(4) GeV and jηj<2.5ð2.7Þ of the pT-ordered eðμÞ,

ΔRðl;l0Þ>0.1ð0.2Þ for all same(different)-flavor lepton pairs, mlþl >20GeV for at least one lepton pair, mlþl >5 GeV for all same-flavor lepton pairs, and 80< m4l <100GeV. The four-momenta of all final-state photons withinΔR¼0.1of a lepton are summed into the four-momentum of that lepton. The acceptance factorA4lis the fraction of Z→4l events in the final phase space which falls into the fiducial region. TheC4luncertainty is mostly experimental and the A4l uncertainty is entirely theoretical. TheA4landC4lvalues are listed in TableIfor each channel and data set. TheC4l values for 8 TeV are larger than for 7 TeV due to a variety of factors, including electron identification improvements with better brems- strahlung treatment and additional muon detector coverage.

The MC lepton identification and trigger efficiencies are corrected based on studies performed in data control regions. The energy and momentum scales and resolutions of the MC events are calibrated to reproduce data from Z→lþlandJ=ψ →lþl decays. The uncertainties on theZ→4l signal detection efficiency are determined by varying the nominal calibrations (including lepton energy and momentum resolutions and scales, and the trigger, reconstruction, and identification efficiencies) in the MC samples by one standard deviation. For the 8 TeV (7 TeV) analysis, the relative uncertainties on the C4l factors are 2.7% (2.7%), 3.7% (4.9%), 6.2% (9.8%), and 9.4%

(14.9%) for μμþμμ, eeþμμ, μμþee, and eeþee, respectively. The major uncertainty contributions come from the lepton reconstruction and identification efficien- cies. The relative uncertainties on theA4lfactors, evaluated using POWHEG MC samples with the same approach for QCD scale and PDF uncertainties as described earlier, range from 1.3% to 1.7% depending on the channel.

The overall background in the selected4levent sample is estimated to be below 1%, as shown in Table I. The background contributions from diboson production are estimated, using MC simulations, to be 0.060.01 and 0.490.04 events in the 7 and 8 TeV data sets,

[GeV]

m12

20 30 40 50 60 70 80 90 100

Events / 2.5 GeV

0 5 10 15 20 25 30 35 ATLAS

= 7 TeV, 4.5 fb-1

s

-1

(a)

= 8 TeV, 20.3 fb s

Data Z Bkg

stat+syst

σ

4l Z

[GeV]

m34

0 5 10 15 20 25 30 35 40 45 50

Events / 2.5 GeV

0 10 20 30 40 50 60 70 80 90 ATLAS

= 7 TeV, 4.5 fb-1

s

-1

(b)

= 8 TeV, 20.3 fb s

Data Z Bkg

stat+syst

σ

4l Z

[GeV]

m4l

75 80 85 90 95 100 105

Events / 3 GeV

0 20 40 60 80 100 120 ATLAS

= 7 TeV, 4.5 fb-1

s

-1

(c)

= 8 TeV, 20.3 fb s

Data Z Bkg

stat+syst

σ

4l Z

FIG. 2 (color online). Data and MC invariant mass distributions of (a) the leading lepton pair,m12, (b) the subleading lepton pair,m34, and (c) the four-lepton system,m4l. All selections are applied except in (c) there is nom4lrequirement. The background contributes

<1%of the total expected signal (invisible in the plots).

(4)

respectively. Background contributions from Zþjets and top-production processes are estimated from data. Such background events may contain two isolated leptons from Z decays or from W decays in top events, together with additional activity such as heavy-flavor jets or misidentified components of jets yielding reconstructed leptons. These backgrounds are estimated using a background-enriched control sample oflljljlevents, selected with the standard signal requirements except that lepton-like jets, jl, are selected in place of two of the signal leptons. Electron-like jets, je, in the lljljl control sample are obtained from electromagnetic clusters matched to tracks in the ID that do not satisfy the identification criteria or isolation require- ments. Muon-like jets,jμ, are defined as muon candidates that fail the requirements on isolation. These backgrounds in the signal sample are estimated by scaling each event in thelljljl control sample byf1×f2, where the factorfi (i¼1, 2) for each of the two lepton-like jets depends on lepton flavor and pT. The factor f is the ratio of the probability for a jet to satisfy the signal lepton selection criteria to the probability for the jet to satisfy the lepton-like jet criteria, and is obtained from independent jet-enriched data samples dominated by Zþjets or t¯t events. The background from Zþjets and top processes, for all 4l channels combined, is estimated to be 0.380.14 and 0.490.10events for the 7 and 8 TeV data, respectively.

The numbers of signal events predicted by MC simu- lation are 23.81.2 and 1457 for 7 and 8 TeV, respectively. The data and MC predictions, as shown in Fig. 2, are in good agreement. Denoting the integrated luminosity by L, the measured fiducial cross sections (σfidZ4l), determined byðNobs4l Nbkg4l Þ=ðL×C4lÞ, are given in Table I. The cross section in the final phase space for

each channel is calculated byσfidZ4l/A4l. The cross sections obtained for the eeþee and μμþμμ channels, and for the2eþ2μand2μþ2e channels, are compatible within errors and are combined using2×2 covariance matrices.

The total 4lcross section is a sum of the two combined cross sections, and the uncertainty includes correlations between the four channels. These cross sections in the final phase space are also given in TableI.

The Z→4l branching fraction, ΓZ→4lZ, is deter- mined by subtracting the nonresonant contributions to the selected events and normalizing the resulting yield to the observed number ofZ→μþμ events in the same data set,

ΓZ→4l

ΓZ ¼

ΓZ→μμ

ΓZ

ðNobs4l −Nbkg4l Þð1−fnrÞC·A ðNobs −Nbkg ÞC4l·A4l ; where ΓZ→μμZ¼ ð3.3660.007Þ% [29], Nobs is around 1.7 million and 8.9 million in the 7 and 8 TeV data sets, respectively, andðC×AÞisð41.40.6Þ%and ð41.80.6Þ%, respectively. The background (Nbkg ) is estimated to be around 0.3% of the selected Z→μþμ events. The branching fraction forZ→4l, summed over alll¼e;μfinal states, is determined with both the 7 and 8 TeV data sets. The measured branching fractions for each data set are consistent within uncertainties and are combined, giving

ΓZ→4lZ¼ ð3.200.25ðstatÞ 0.13ðsystÞÞ×10−6 in the final phase-space region, where the systematic uncertainty includes a contribution (about 0.2%) due to TABLE I. Summary of the observed (Nobs4l) and expected (Nexp4l) number of selectedZ→4lcandidate events, and the estimated number of background events (Nbkg4l) in each 4l channel for pffiffiffis¼7 and 8 TeV. The associated uncertainties are statistical and systematic combined. The central values of the acceptance and efficiency factors (A4l) and (C4l), the measured fiducial cross sections (σfidZ4l), and the total cross sections formlþl>5GeV,80< m4l<100GeV (σZ4l) are also presented. The fiducial regions are defined in the text and are different for each channel. TheσZ4lare given for same-flavor (4eand4μ), different-flavor (2e2μ), and all channels combined. The uncertainties onσfidZ4landσZ4lare the statistical and systematic uncertainties, and the uncertainty due to the luminosity measurement.

ffiffiffis

p 4lstate Nobs4l Nexp4l Nbkg4l C4l σfidZ4l [fb] A4l σZ4l [fb]

7 TeV eeþee 1 1.80.3 0.120.04 21.5% 0.9þ1.4−0.70.140.02 7.5%

4e;4μ 32111.00.6 μμþμμ 8 11.30.5 0.080.04 59.2% 3.0þ1−0.9.20.070.05 18.3%

eeþμμ 7 7.90.4 0.180.09 49.0% 3.1þ1.4−1.10.160.05 15.8%

2e2μ 44143.30.9 μμþee 5 3.30.3 0.070.04 36.3% 3.0þ1−1.2.60.300.06 8.8%

combined 21 24.21.2 0.440.14 761841.4

8 TeV eeþee 16 14.41.4 0.140.03 36.1% 2.2þ0−0..560.200.06 7.3%

4e;4μ 5661.81.6 μμþμμ 71 68.82.7 0.340.05 71.1% 4.9þ0.7−0.60.130.14 17.8%

eeþμμ 48 43.22.1 0.320.05 55.5% 4.2þ0−0..670.160.12 14.8%

2e2μ 5272.41.5 μμþee 16 19.31.3 0.180.04 46.2% 1.7þ0.5−0.40.100.04 7.9%

combined 151 1467 1.00.11 107943.0

(5)

the interference between the s-channel and t-channel processes, calculated using CALCHEP[30]. The measured branching fraction is consistent with the SM prediction of ð3.330.01Þ×10−6, calculated using POWHEG. For a larger final phase-space region defined bymlþl >4GeV and 80< m4l <100GeV, similar to that used by CMS, the acceptance factors A4l and the nonresonant fractions fnr, and their uncertainties, are also evaluated (leaving the fiducial region unchanged), and the measured branch- ing fraction becomes ΓZ→4lZ¼ð4.310.34ðstatÞ 0.17ðsystÞÞ×10−6, compared with an SM prediction of ð4.500.01Þ×10−6. This result is consistent with the CMS result measured with data collected from pp collisions at 7 TeV.

In summary, using data collected by the ATLAS detector corresponding to an integrated luminosity of4.5fb−1and 20.3fb−1 at pffiffiffis

¼7 and 8 TeV, respectively, the total Z→4lproduction cross sections in the phase-space region mlþl >5GeV and 80< m4l<100GeV are measured to be σZ4l¼7618ðstatÞ 4ðsystÞ 1.4ðlumiÞ fb at 7 TeV and 1079ðstatÞ 4ðsystÞ 3.0ðlumiÞ fb at 8 TeV, consistent with the SM predictions of 90.0 2.1fb and 104.82.5 fb, respectively. The Z→4l branching fraction is determined to beð3.200.25ðstatÞ 0.13ðsystÞÞ×10−6, consistent with the SM prediction of ð3.330.01Þ×10−6.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina;

YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN;

CONICYT, Chile; CAS, MOST and NSFC, China;

COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia;

ARRS and MIZŠ, Slovenia; DST/NRF, South Africa;

MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom;

DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden),

CC-IN2P3 (France), KIT/GridKA (Germany), INFN- CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] ATLAS Collaboration, JINST3, S08003 (2008).

[2] L. Evans and P. Bryant,JINST3, S08001 (2008).

[3] J. M. Campbell, R. K. Ellis, and C. Williams,J. High Energy Phys. 07 (2011) 018.

[4] ATLAS Collaboration,Phys. Lett. B716, 1 (2012).

[5] CMS Collaboration,Phys. Lett. B716, 30 (2012).

[6] CMS Collaboration,J. High Energy Phys. 12 (2012) 034.

[7] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector, and thezaxis along the beam line. Thexaxis points from the IP to the center of the LHC ring, and they axis points upwards. Cylindrical coordinates (r,ϕ) are used in the transverse plane,ϕbeing the azimuthal angle around the beam line. The pseudorapidity is defined in terms of the polar angleθasη¼−ln tanðθ=2Þ. Observables labeled

“transverse”are projected into thex-yplane.

[8] ATLAS Collaboration,Eur. Phys. J. C73, 2518 (2013).

[9] The 2012 luminosity measurement follows the same methodology as that detailed in Ref. [8]. It is based on a preliminary calibration of the luminosity scale derived from beam-separation scans performed in November 2012.

[10] T. Melia, P. Nason, R. Röntsch, and G. Zanderighi,J. High Energy Phys. 11 (2011) 078.

[11] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06 (2010) 043.

[12] P. Nason,J. High Energy Phys. 11 (2004) 040.

[13] H. L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).

[14] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C63, 189 (2009).

[15] T. Binoth, N. Kauer, and P. Mertsch,arXiv:0807.0024.

[16] T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[17] T. Sjostrand, S. Mrenna, and P. Skands, Comput. Phys.

Commun. 178, 852 (2008).

[18] P. Golonka and Z. Was,Eur. Phys. J. C45, 97 (2006).

[19] S. Frixione and B. R. Webber, J. High Energy Phys. 06 (2002) 029.

[20] M. L. Mangano, F. Piccinini, A. D. Polosa, M. Moretti, and R. Pittau, J. High Energy Phys. 07 (2003) 001.

[21] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K.

Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys. 01 (2001) 010.

[22] J. M. Butterworth, J. R. Forshaw, and M. H. Seymour, Z. Phys. C72, 637 (1996).

[23] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S.

Schumann, F. Siegert, and J. Winter,J. High Energy Phys.

02 (2009) 007.

[24] ATLAS Collaboration,Eur. Phys. J. C70, 823 (2010).

[25] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A506, 250 (2003).

(6)

[26] ATLAS Collaboration,Phys. Lett. B726, 88 (2013).

[27] ATLAS Collaboration,Eur. Phys. J. C72, 1909 (2012).

[28] ATLAS Collaboration, Report No. ATLAS-CONF-2012- 047,https://cds.cern.ch/record/1449796.

[29] K. Nakamura (Particle Data Group),J. Phys. G37, 075021 (2010).

[30] A. Belyaev, N. D. Christensen, and A. Pukhov, Comput.

Phys. Commun.184, 1729 (2013).

G. Aad,84B. Abbott,112 J. Abdallah,152 S. Abdel Khalek,116O. Abdinov,11R. Aben,106 B. Abi,113M. Abolins,89 O. S. AbouZeid,159H. Abramowicz,154 H. Abreu,137 R. Abreu,30 Y. Abulaiti,147a,147bB. S. Acharya,165a,165b,b

L. Adamczyk,38a D. L. Adams,25J. Adelman,177S. Adomeit,99T. Adye,130T. Agatonovic-Jovin,13a J. A. Aguilar-Saavedra,125f,125aM. Agustoni,17S. P. Ahlen,22A. Ahmad,149F. Ahmadov,64,cG. Aielli,134a,134b H. Akerstedt,147a,147bT. P. A. Åkesson,80G. Akimoto,156A. V. Akimov,95G. L. Alberghi,20a,20bJ. Albert,170S. Albrand,55 M. J. Alconada Verzini,70M. Aleksa,30I. N. Aleksandrov,64C. Alexa,26aG. Alexander,154G. Alexandre,49T. Alexopoulos,10

M. Alhroob,165a,165cG. Alimonti,90a L. Alio,84J. Alison,31 B. M. M. Allbrooke,18L. J. Allison,71P. P. Allport,73 S. E. Allwood-Spiers,53J. Almond,83 A. Aloisio,103a,103bA. Alonso,36F. Alonso,70C. Alpigiani,75A. Altheimer,35

B. Alvarez Gonzalez,89 M. G. Alviggi,103a,103bK. Amako,65Y. Amaral Coutinho,24a C. Amelung,23 D. Amidei,88 S. P. Amor Dos Santos,125a,125cA. Amorim,125a,125bS. Amoroso,48N. Amram,154G. Amundsen,23C. Anastopoulos,140 L. S. Ancu,49N. Andari,30T. Andeen,35C. F. Anders,58bG. Anders,30K. J. Anderson,31A. Andreazza,90a,90bV. Andrei,58a

X. S. Anduaga,70S. Angelidakis,9 I. Angelozzi,106P. Anger,44A. Angerami,35F. Anghinolfi,30A. V. Anisenkov,108 N. Anjos,125aA. Annovi,47A. Antonaki,9 M. Antonelli,47A. Antonov,97J. Antos,145b F. Anulli,133aM. Aoki,65 L. Aperio Bella,18R. Apolle,119,dG. Arabidze,89I. Aracena,144Y. Arai,65J. P. Araque,125aA. T. H. Arce,45J-F. Arguin,94

S. Argyropoulos,42 M. Arik,19a A. J. Armbruster,30O. Arnaez,82V. Arnal,81H. Arnold,48O. Arslan,21A. Artamonov,96 G. Artoni,23S. Asai,156 N. Asbah,94 A. Ashkenazi,154 B. Åsman,147a,147bL. Asquith,6 K. Assamagan,25R. Astalos,145a M. Atkinson,166N. B. Atlay,142B. Auerbach,6K. Augsten,127M. Aurousseau,146bG. Avolio,30G. Azuelos,94,eY. Azuma,156

M. A. Baak,30C. Bacci,135a,135bH. Bachacou,137K. Bachas,155 M. Backes,30M. Backhaus,30J. Backus Mayes,144 E. Badescu,26aP. Bagiacchi,133a,133bP. Bagnaia,133a,133bY. Bai,33a T. Bain,35J. T. Baines,130 O. K. Baker,177 S. Baker,77

P. Balek,128F. Balli,137 E. Banas,39Sw. Banerjee,174 D. Banfi,30A. Bangert,151A. A. E. Bannoura,176V. Bansal,170 H. S. Bansil,18L. Barak,173S. P. Baranov,95E. L. Barberio,87D. Barberis,50a,50bM. Barbero,84T. Barillari,100 M. Barisonzi,176T. Barklow,144 N. Barlow,28B. M. Barnett,130R. M. Barnett,15Z. Barnovska,5 A. Baroncelli,135a G. Barone,49A. J. Barr,119F. Barreiro,81J. Barreiro Guimarães da Costa,57R. Bartoldus,144A. E. Barton,71P. Bartos,145a

V. Bartsch,150 A. Bassalat,116 A. Basye,166R. L. Bates,53L. Batkova,145aJ. R. Batley,28M. Battistin,30F. Bauer,137 H. S. Bawa,144,fT. Beau,79P. H. Beauchemin,162R. Beccherle,123a,123bP. Bechtle,21H. P. Beck,17K. Becker,176S. Becker,99

M. Beckingham,139 C. Becot,116 A. J. Beddall,19c A. Beddall,19c S. Bedikian,177V. A. Bednyakov,64 C. P. Bee,149 L. J. Beemster,106 T. A. Beermann,176M. Begel,25K. Behr,119 C. Belanger-Champagne,86 P. J. Bell,49W. H. Bell,49 G. Bella,154 L. Bellagamba,20a A. Bellerive,29M. Bellomo,85A. Belloni,57 O. L. Beloborodova,108,gK. Belotskiy,97

O. Beltramello,30O. Benary,154D. Benchekroun,136aK. Bendtz,147a,147bN. Benekos,166Y. Benhammou,154 E. Benhar Noccioli,49J. A. Benitez Garcia,160b D. P. Benjamin,45J. R. Bensinger,23K. Benslama,131 S. Bentvelsen,106 D. Berge,106E. Bergeaas Kuutmann,16N. Berger,5F. Berghaus,170E. Berglund,106J. Beringer,15C. Bernard,22P. Bernat,77

C. Bernius,78F. U. Bernlochner,170T. Berry,76P. Berta,128 C. Bertella,84F. Bertolucci,123a,123b D. Bertsche,112 M. I. Besana,90a G. J. Besjes,105 O. Bessidskaia,147a,147bN. Besson,137C. Betancourt,48S. Bethke,100W. Bhimji,46 R. M. Bianchi,124L. Bianchini,23M. Bianco,30O. Biebel,99S. P. Bieniek,77K. Bierwagen,54J. Biesiada,15M. Biglietti,135a

J. Bilbao De Mendizabal,49H. Bilokon,47M. Bindi,54S. Binet,116 A. Bingul,19c C. Bini,133a,133bC. W. Black,151 J. E. Black,144K. M. Black,22D. Blackburn,139R. E. Blair,6 J-B. Blanchard,137T. Blazek,145aI. Bloch,42C. Blocker,23 W. Blum,82,aU. Blumenschein,54 G. J. Bobbink,106 V. S. Bobrovnikov,108S. S. Bocchetta,80A. Bocci,45C. R. Boddy,119 M. Boehler,48J. Boek,176T. T. Boek,176J. A. Bogaerts,30A. G. Bogdanchikov,108A. Bogouch,91,aC. Bohm,147aJ. Bohm,126 V. Boisvert,76 T. Bold,38a V. Boldea,26a A. S. Boldyrev,98 M. Bomben,79M. Bona,75 M. Boonekamp,137A. Borisov,129 G. Borissov,71M. Borri,83S. Borroni,42 J. Bortfeldt,99V. Bortolotto,135a,135bK. Bos,106D. Boscherini,20aM. Bosman,12

H. Boterenbrood,106J. Boudreau,124 J. Bouffard,2 E. V. Bouhova-Thacker,71D. Boumediene,34C. Bourdarios,116 N. Bousson,113 S. Boutouil,136dA. Boveia,31J. Boyd,30I. R. Boyko,64I. Bozovic-Jelisavcic,13b J. Bracinik,18

(7)

P. Branchini,135aA. Brandt,8 G. Brandt,15O. Brandt,58a U. Bratzler,157 B. Brau,85J. E. Brau,115 H. M. Braun,176,a S. F. Brazzale,165a,165cB. Brelier,159 K. Brendlinger,121 A. J. Brennan,87R. Brenner,167S. Bressler,173K. Bristow,146c T. M. Bristow,46D. Britton,53F. M. Brochu,28I. Brock,21R. Brock,89C. Bromberg,89J. Bronner,100 G. Brooijmans,35

T. Brooks,76W. K. Brooks,32b J. Brosamer,15E. Brost,115G. Brown,83 J. Brown,55P. A. Bruckman de Renstrom,39 D. Bruncko,145b R. Bruneliere,48S. Brunet,60A. Bruni,20a G. Bruni,20a M. Bruschi,20aL. Bryngemark,80T. Buanes,14 Q. Buat,143F. Bucci,49P. Buchholz,142R. M. Buckingham,119A. G. Buckley,53S. I. Buda,26aI. A. Budagov,64F. Buehrer,48 L. Bugge,118M. K. Bugge,118O. Bulekov,97A. C. Bundock,73H. Burckhart,30S. Burdin,73B. Burghgrave,107S. Burke,130

I. Burmeister,43E. Busato,34D. Büscher,48V. Büscher,82P. Bussey,53C. P. Buszello,167 B. Butler,57J. M. Butler,22 A. I. Butt,3 C. M. Buttar,53J. M. Butterworth,77 P. Butti,106W. Buttinger,28A. Buzatu,53M. Byszewski,10 S. Cabrera Urbán,168D. Caforio,20a,20bO. Cakir,4aP. Calafiura,15A. Calandri,137G. Calderini,79P. Calfayan,99R. Calkins,107

L. P. Caloba,24a D. Calvet,34S. Calvet,34R. Camacho Toro,49S. Camarda,42D. Cameron,118 L. M. Caminada,15 R. Caminal Armadans,12S. Campana,30M. Campanelli,77A. Campoverde,149V. Canale,103a,103bA. Canepa,160a M. Cano Bret,75J. Cantero,81R. Cantrill,76 T. Cao,40M. D. M. Capeans Garrido,30I. Caprini,26a M. Caprini,26a M. Capua,37a,37bR. Caputo,82R. Cardarelli,134aT. Carli,30G. Carlino,103aL. Carminati,90a,90bS. Caron,105 E. Carquin,32a

G. D. Carrillo-Montoya,146cA. A. Carter,75 J. R. Carter,28J. Carvalho,125a,125c D. Casadei,77 M. P. Casado,12 E. Castaneda-Miranda,146b A. Castelli,106 V. Castillo Gimenez,168 N. F. Castro,125aP. Catastini,57 A. Catinaccio,30 J. R. Catmore,118A. Cattai,30G. Cattani,134a,134bS. Caughron,89V. Cavaliere,166D. Cavalli,90a M. Cavalli-Sforza,12 V. Cavasinni,123a,123bF. Ceradini,135a,135bB. Cerio,45K. Cerny,128A. S. Cerqueira,24bA. Cerri,150L. Cerrito,75F. Cerutti,15

M. Cerv,30A. Cervelli,17S. A. Cetin,19b A. Chafaq,136aD. Chakraborty,107I. Chalupkova,128 K. Chan,3 P. Chang,166 B. Chapleau,86J. D. Chapman,28D. Charfeddine,116 D. G. Charlton,18 C. C. Chau,159C. A. Chavez Barajas,150 S. Cheatham,86A. Chegwidden,89S. Chekanov,6S. V. Chekulaev,160aG. A. Chelkov,64M. A. Chelstowska,88C. Chen,63

H. Chen,25K. Chen,149 L. Chen,33d,h S. Chen,33c X. Chen,146cY. Chen,35H. C. Cheng,88Y. Cheng,31A. Cheplakov,64 R. Cherkaoui El Moursli,136eV. Chernyatin,25,aE. Cheu,7L. Chevalier,137V. Chiarella,47G. Chiefari,103a,103bJ. T. Childers,6

A. Chilingarov,71G. Chiodini,72a A. S. Chisholm,18R. T. Chislett,77A. Chitan,26a M. V. Chizhov,64S. Chouridou,9 B. K. B. Chow,99D. Chromek-Burckhart,30M. L. Chu,152 J. Chudoba,126J. C. Chwastowski,39L. Chytka,114 G. Ciapetti,133a,133bA. K. Ciftci,4aR. Ciftci,4a D. Cinca,62V. Cindro,74A. Ciocio,15P. Cirkovic,13b Z. H. Citron,173 M. Citterio,90aM. Ciubancan,26aA. Clark,49P. J. Clark,46R. N. Clarke,15W. Cleland,124J. C. Clemens,84C. Clement,147a,147b

Y. Coadou,84 M. Cobal,165a,165c A. Coccaro,139 J. Cochran,63L. Coffey,23J. G. Cogan,144J. Coggeshall,166B. Cole,35 S. Cole,107 A. P. Colijn,106C. Collins-Tooth,53J. Collot,55T. Colombo,58c G. Colon,85G. Compostella,100 P. Conde Muiño,125a,125bE. Coniavitis,167M. C. Conidi,12S. H. Connell,146bI. A. Connelly,76 S. M. Consonni,90a,90b

V. Consorti,48S. Constantinescu,26a C. Conta,120a,120bG. Conti,57F. Conventi,103a,iM. Cooke,15B. D. Cooper,77 A. M. Cooper-Sarkar,119N. J. Cooper-Smith,76K. Copic,15 T. Cornelissen,176M. Corradi,20a F. Corriveau,86,j A. Corso-Radu,164A. Cortes-Gonzalez,12G. Cortiana,100G. Costa,90aM. J. Costa,168D. Costanzo,140D. Côté,8G. Cottin,28

G. Cowan,76B. E. Cox,83K. Cranmer,109G. Cree,29 S. Crépé-Renaudin,55F. Crescioli,79W. A. Cribbs,147a,147b M. Crispin Ortuzar,119 M. Cristinziani,21V. Croft,105G. Crosetti,37a,37b C-M. Cuciuc,26aC. Cuenca Almenar,177 T. Cuhadar Donszelmann,140J. Cummings,177M. Curatolo,47C. Cuthbert,151H. Czirr,142P. Czodrowski,3Z. Czyczula,177 S. D’Auria,53M. D’Onofrio,73M. J. Da Cunha Sargedas De Sousa,125a,125bC. Da Via,83W. Dabrowski,38aA. Dafinca,119

T. Dai,88O. Dale,14F. Dallaire,94C. Dallapiccola,85M. Dam,36A. C. Daniells,18M. Dano Hoffmann,137V. Dao,105 G. Darbo,50a G. L. Darlea,26c S. Darmora,8 J. A. Dassoulas,42A. Dattagupta,60W. Davey,21C. David,170 T. Davidek,128 E. Davies,119,d M. Davies,154 O. Davignon,79A. R. Davison,77P. Davison,77Y. Davygora,58a E. Dawe,143I. Dawson,140

R. K. Daya-Ishmukhametova,23K. De,8 R. de Asmundis,103a S. De Castro,20a,20bS. De Cecco,79N. De Groot,105 P. de Jong,106H. De la Torre,81F. De Lorenzi,63L. De Nooij,106D. De Pedis,133aA. De Salvo,133aU. De Sanctis,165a,165b

A. De Santo,150 J. B. De Vivie De Regie,116 G. De Zorzi,133a,133b W. J. Dearnaley,71R. Debbe,25C. Debenedetti,46 B. Dechenaux,55D. V. Dedovich,64J. Degenhardt,121I. Deigaard,106J. Del Peso,81T. Del Prete,123a,123bF. Deliot,137

C. M. Delitzsch,49M. Deliyergiyev,74A. Dell’Acqua,30 L. Dell’Asta,22M. Dell’Orso,123a,123bM. Della Pietra,103a,i D. della Volpe,49M. Delmastro,5P. A. Delsart,55C. Deluca,106S. Demers,177M. Demichev,64A. Demilly,79S. P. Denisov,129 D. Derendarz,39J. E. Derkaoui,136dF. Derue,79P. Dervan,73K. Desch,21C. Deterre,42P. O. Deviveiros,106A. Dewhurst,130 S. Dhaliwal,106A. Di Ciaccio,134a,134bL. Di Ciaccio,5 A. Di Domenico,133a,133bC. Di Donato,103a,103bA. Di Girolamo,30 B. Di Girolamo,30A. Di Mattia,153B. Di Micco,135a,135bR. Di Nardo,47A. Di Simone,48R. Di Sipio,20a,20bD. Di Valentino,29

(8)

M. A. Diaz,32a E. B. Diehl,88J. Dietrich,42 T. A. Dietzsch,58a S. Diglio,84A. Dimitrievska,13a J. Dingfelder,21 C. Dionisi,133a,133bP. Dita,26a S. Dita,26aF. Dittus,30F. Djama,84T. Djobava,51b M. A. B. do Vale,24c

A. Do Valle Wemans,125a,125gT. K. O. Doan,5 D. Dobos,30C. Doglioni,49T. Doherty,53T. Dohmae,156J. Dolejsi,128 Z. Dolezal,128B. A. Dolgoshein,97,a M. Donadelli,24dS. Donati,123a,123bP. Dondero,120a,120bJ. Donini,34J. Dopke,30

A. Doria,103aA. Dos Anjos,174M. T. Dova,70A. T. Doyle,53 M. Dris,10J. Dubbert,88S. Dube,15E. Dubreuil,34 E. Duchovni,173 G. Duckeck,99O. A. Ducu,26a D. Duda,176 A. Dudarev,30F. Dudziak,63L. Duflot,116 L. Duguid,76 M. Dührssen,30M. Dunford,58aH. Duran Yildiz,4aM. Düren,52A. Durglishvili,51bM. Dwuznik,38aM. Dyndal,38aJ. Ebke,99

W. Edson,2 N. C. Edwards,46W. Ehrenfeld,21T. Eifert,144G. Eigen,14 K. Einsweiler,15T. Ekelof,167 M. El Kacimi,136c M. Ellert,167 S. Elles,5F. Ellinghaus,82N. Ellis,30J. Elmsheuser,99M. Elsing,30D. Emeliyanov,130Y. Enari,156 O. C. Endner,82M. Endo,117 R. Engelmann,149 J. Erdmann,177 A. Ereditato,17 D. Eriksson,147aG. Ernis,176 J. Ernst,2 M. Ernst,25J. Ernwein,137 D. Errede,166 S. Errede,166E. Ertel,82M. Escalier,116H. Esch,43C. Escobar,124 B. Esposito,47 A. I. Etienvre,137E. Etzion,154H. Evans,60L. Fabbri,20a,20bG. Facini,30R. M. Fakhrutdinov,129S. Falciano,133aR. J. Falla,77 Y. Fang,33a M. Fanti,90a,90bA. Farbin,8A. Farilla,135aT. Farooque,12S. Farrell,164S. M. Farrington,171P. Farthouat,30 F. Fassi,168P. Fassnacht,30D. Fassouliotis,9A. Favareto,50a,50bL. Fayard,116P. Federic,145aO. L. Fedin,122,kW. Fedorko,169 M. Fehling-Kaschek,48S. Feigl,30L. Feligioni,84C. Feng,33dE. J. Feng,6H. Feng,88A. B. Fenyuk,129S. Fernandez Perez,30 S. Ferrag,53J. Ferrando,53A. Ferrari,167 P. Ferrari,106R. Ferrari,120aD. E. Ferreira de Lima,53A. Ferrer,168D. Ferrere,49

C. Ferretti,88A. Ferretto Parodi,50a,50b M. Fiascaris,31F. Fiedler,82A. Filipčič,74M. Filipuzzi,42F. Filthaut,105 M. Fincke-Keeler,170 K. D. Finelli,151 M. C. N. Fiolhais,125a,125cL. Fiorini,168 A. Firan,40 J. Fischer,176 W. C. Fisher,89 E. A. Fitzgerald,23M. Flechl,48I. Fleck,142P. Fleischmann,175S. Fleischmann,176G. T. Fletcher,140G. Fletcher,75T. Flick,176 A. Floderus,80L. R. Flores Castillo,174A. C. Florez Bustos,160bM. J. Flowerdew,100A. Formica,137A. Forti,83D. Fortin,160a D. Fournier,116H. Fox,71S. Fracchia,12P. Francavilla,79M. Franchini,20a,20bS. Franchino,30D. Francis,30M. Franklin,57 S. Franz,61M. Fraternali,120a,120bS. T. French,28C. Friedrich,42F. Friedrich,44D. Froidevaux,30J. A. Frost,28C. Fukunaga,157 E. Fullana Torregrosa,82B. G. Fulsom,144J. Fuster,168C. Gabaldon,55O. Gabizon,173A. Gabrielli,20a,20bA. Gabrielli,133a,133b S. Gadatsch,106S. Gadomski,49G. Gagliardi,50a,50bP. Gagnon,60C. Galea,105B. Galhardo,125a,125cE. J. Gallas,119V. Gallo,17 B. J. Gallop,130P. Gallus,127G. Galster,36K. K. Gan,110R. P. Gandrajula,62J. Gao,33b,hY. S. Gao,144,fF. M. Garay Walls,46 F. Garberson,177C. García,168J. E. García Navarro,168M. Garcia-Sciveres,15R. W. Gardner,31N. Garelli,144V. Garonne,30

C. Gatti,47G. Gaudio,120aB. Gaur,142L. Gauthier,94P. Gauzzi,133a,133bI. L. Gavrilenko,95C. Gay,169 G. Gaycken,21 E. N. Gazis,10P. Ge,33dZ. Gecse,169 C. N. P. Gee,130D. A. A. Geerts,106 Ch. Geich-Gimbel,21K. Gellerstedt,147a,147b C. Gemme,50aA. Gemmell,53M. H. Genest,55S. Gentile,133a,133bM. George,54S. George,76D. Gerbaudo,164A. Gershon,154

H. Ghazlane,136b N. Ghodbane,34B. Giacobbe,20a S. Giagu,133a,133bV. Giangiobbe,12 P. Giannetti,123a,123bF. Gianotti,30 B. Gibbard,25S. M. Gibson,76M. Gilchriese,15T. P. S. Gillam,28D. Gillberg,30G. Gilles,34D. M. Gingrich,3,eN. Giokaris,9

M. P. Giordani,165a,165c R. Giordano,103a,103bF. M. Giorgi,20a F. M. Giorgi,16P. F. Giraud,137D. Giugni,90a C. Giuliani,48 M. Giulini,58bB. K. Gjelsten,118I. Gkialas,155,lL. K. Gladilin,98C. Glasman,81J. Glatzer,30P. C. F. Glaysher,46A. Glazov,42

G. L. Glonti,64M. Goblirsch-Kolb,100 J. R. Goddard,75 J. Godfrey,143J. Godlewski,30C. Goeringer,82 S. Goldfarb,88 T. Golling,177D. Golubkov,129 A. Gomes,125a,125b,125d

L. S. Gomez Fajardo,42R. Gonçalo,125a J. Goncalves Pinto Firmino Da Costa,137L. Gonella,21S. González de la Hoz,168G. Gonzalez Parra,12 M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49 L. Goossens,30 P. A. Gorbounov,96H. A. Gordon,25I. Gorelov,104 G. Gorfine,176B. Gorini,30E. Gorini,72a,72b A. Gorišek,74E. Gornicki,39A. T. Goshaw,6 C. Gössling,43 M. I. Gostkin,64

M. Gouighri,136aD. Goujdami,136cM. P. Goulette,49A. G. Goussiou,139 C. Goy,5 S. Gozpinar,23H. M. X. Grabas,137 L. Graber,54I. Grabowska-Bold,38a P. Grafström,20a,20bK-J. Grahn,42J. Gramling,49E. Gramstad,118S. Grancagnolo,16 V. Grassi,149V. Gratchev,122 H. M. Gray,30E. Graziani,135aO. G. Grebenyuk,122 Z. D. Greenwood,78,mK. Gregersen,77 I. M. Gregor,42 P. Grenier,144J. Griffiths,8 N. Grigalashvili,64A. A. Grillo,138 K. Grimm,71S. Grinstein,12,nPh. Gris,34 Y. V. Grishkevich,98J-F. Grivaz,116 J. P. Grohs,44A. Grohsjean,42E. Gross,173J. Grosse-Knetter,54G. C. Grossi,134a,134b

J. Groth-Jensen,173 Z. J. Grout,150 K. Grybel,142 L. Guan,33bF. Guescini,49D. Guest,177O. Gueta,154C. Guicheney,34 E. Guido,50a,50bT. Guillemin,116S. Guindon,2U. Gul,53C. Gumpert,44J. Gunther,127J. Guo,35S. Gupta,119P. Gutierrez,112

N. G. Gutierrez Ortiz,53C. Gutschow,77N. Guttman,154 C. Guyot,137C. Gwenlan,119 C. B. Gwilliam,73A. Haas,109 C. Haber,15H. K. Hadavand,8N. Haddad,136eP. Haefner,21S. Hageboeck,21Z. Hajduk,39H. Hakobyan,178M. Haleem,42 D. Hall,119G. Halladjian,89 K. Hamacher,176P. Hamal,114K. Hamano,170M. Hamer,54 A. Hamilton,146aS. Hamilton,162

P. G. Hamnett,42L. Han,33bK. Hanagaki,117K. Hanawa,156M. Hance,15P. Hanke,58a R. Hanna,137J. R. Hansen,36

Referanser

RELATERTE DOKUMENTER

60a Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China. 60b Institute of

Aad et al., “Search for direct top squark pair production in events with a Z boson, b-jets and missing transverse momentum in sqrt(s)=8 TeV pp collisions with the ATLAS detector,”

51b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 52 II Physikalisches Institut, Justus-Liebig-Universität Giessen,

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

T T ¯ → Ht+X search (simulated events): comparison of (a) the jet multiplicity distri- bution after preselection, and (b) the b-tag multiplicity distribution after the requirement of

120 ( a ) Budker Institute of Nuclear Physics, SB RAS, Novosibirsk; ( b ) Novosibirsk State University Novosibirsk, Russia 121 Institute for High Energy Physics of the National

59 ( a ) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China; ( b ) Institute

60 ( a ) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China; ( b ) Institute