• No results found

brain-age prediction longitudinal and cross-sectional study using advanced diffusion models and White matter microstructure across the adult lifespan: A mixed NeuroImage

N/A
N/A
Protected

Academic year: 2022

Share "brain-age prediction longitudinal and cross-sectional study using advanced diffusion models and White matter microstructure across the adult lifespan: A mixed NeuroImage"

Copied!
14
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

White matter microstructure across the adult lifespan: A mixed

longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction

Dani Beck

a,b,c,

, Ann-Marie de Lange

a,b,d

, Ivan I. Maximov

a,b

, Geneviève Richard

b

, Ole A. Andreassen

b,e

, Jan E. Nordvik

f

, Lars T. Westlye

a,b,e,

aDepartment of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway

bNORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway

cSunnaas Rehabilitation Hospital HT, Nesodden, Oslo, Norway

dDepartment of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom

eKG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway

fCatoSenteret Rehabilitation Center, Son, Norway

a r t i c le i n f o

Keywords:

Ageing White matter Multi-shell Longitudinal, Diffusion Brain age

a b s t r a ct

Themacro-andmicrostructuralarchitectureofhumanbrainwhitematterundergoessubstantialalterations throughoutdevelopmentandageing.Mostofourunderstandingofthespatialandtemporalcharacteristicsof theselifespanadaptationscomefrommagneticresonanceimaging(MRI),includingdiffusionMRI(dMRI),which enablesvisualisationandquantificationofbrainwhitematterwithunprecedentedsensitivityanddetail.However, withsomenotableexceptions,previousstudieshavereliedoncross-sectionaldesigns,limitedageranges,and diffusiontensorimaging(DTI)basedonconventionalsingle-shelldMRI.Inthismixedcross-sectionalandlongitu- dinalstudy(meaninterval:15.2months)including702multi-shelldMRIdatasets,wecombinedcomplementary dMRImodelstoinvestigateagetrajectoriesinhealthyindividualsaged18to94years(57.12%women).Using linearmixedeffectmodelsandmachinelearningbasedbrainageprediction,weassessedtheage-dependence ofdiffusionmetrics,andcomparedtheagepredictionaccuracyofsixdifferentdiffusionmodels,includingdif- fusiontensor(DTI)andkurtosisimaging(DKI),neuriteorientationdispersionanddensityimaging(NODDI), restrictionspectrumimaging(RSI),sphericalmeantechniquemulti-compartment(SMT-mc),andwhitematter tractintegrity(WMTI).TheresultsshowedthattheageslopesforconventionalDTImetrics(fractionalanisotropy [FA],meandiffusivity[MD],axialdiffusivity[AD],radialdiffusivity[RD])werelargelyconsistentwithprevious research,andthatthehighestperformingadvanceddMRImodelsshowedcomparableagepredictionaccuracy toconventionalDTI.LinearmixedeffectsmodelsandWilk’stheoremanalysisshowedthatthe‘FAfine’metric oftheRSImodeland‘orientationdispersion’(OD)metricoftheNODDImodelshowedthehighestsensitivityto age.Theresultsindicatethatadvanceddiffusionmodels(DKI,NODDI,RSI,SMTmc,WMTI)providesensitive measuresofage-relatedmicrostructuralchangesofwhitematterinthebrainthatcomplementandextendthe contributionofconventionalDTI.

1. Introduction

Thearchitectureofhumanbrainwhitematterundergoesconstant remodellingthroughout life. Age-relatedtrajectories of whitematter macro-andmicrostructuretypicallyreflectincreasesinanisotropyand decreasesindiffusivityduringchildhood,adolescenceandearlyadult- hood(Krogsrudetal.,2016;Tamnesetal.,2018;Westlyeetal.,2010), andsubsequentanisotropydecreasesanddiffusivityincreasesinadult- hoodandsenescence(Coxetal.,2016;Davisetal.,2009).Whilethe

Correspondingauthorsat:DepartmentofPsychology,UniversityofOslo,POBox1094Blindern,0317Oslo,Norway.

E-mailaddresses:dani.beck@psykologi.uio.no(D.Beck),l.t.westlye@psykologi.uio.no(L.T.Westlye).

fieldhasprimarilybeendominatedbycross-sectionalstudies,whichby designlackinformationonindividualtrajectories(Schaie,2005),lon- gitudinalstudiesinthelast decadehave showncorresponding white matterchangesinbothdevelopmentandageing(Barricketal.,2010; Bender et al., 2016; Bender and Raz, 2015; deGroot et al., 2016; Likitjaroen et al., 2012; Racine et al., 2019; Sexton et al., 2014; Storsve etal.,2016;Teipeletal.,2010).However,studiesthathave evaluatedindividualdifferencesinchangeacrossawideagerangeare rare(Benderetal.,2016).

https://doi.org/10.1016/j.neuroimage.2020.117441

Received10July2020;Receivedinrevisedform11September2020;Accepted5October2020 Availableonline9October2020

1053-8119/© 2020TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

(2)

Whitematterpropertieshavecommonlybeeninvestigatedusingtra- ditionaldiffusiontensorimaging(DTI),andtheDTI-basedmetricsfrac- tionalanisotropy(FA)aswellasmean(MD),axial(AD),andradial(RD) diffusivityarehighlysensitivetoage(Coxetal.,2016;Sextonetal., 2014;Westlyeetal.,2010;Yapetal.,2013).However,limitationsof conventionalDTI metricssuchastheirinabilitytocapturerestricted non-Gaussiandiffusionandlackofspecificitytodifferentdiffusionpools (Pinesetal.,2020)havemotivatedcontinueddevelopmentofmoread- vanceddiffusionMRI (dMRI)models.Thesemodelsincludediffusion kurtosisimaging(DKI)(Jensenetal.,2005),whichwasdevelopedtoad- dresstherestricteddiffusionornon-Gaussianityinthediffusionsignal;

neuriteorientationdispersionanddensityimaging(NODDI)(Zhangetal., 2012),whichmodelsthreetypesofmicrostructuralenvironments:intra- cellular,extra-cellular,andanisotropicwaterpoolresponsibleforthe spaceoccupiedbycerebrospinalfluid(CSF);whitemattertractintegrity (WMTI)(Chungetal.,2018;Fieremansetal.,2011),whichderivesmi- crostructuralcharacteristicsfromintra-andextra-axonalenvironments;

restrictionspectrumimaging(RSI)(Whiteetal.,2013),whichapplieslin- earmixturemodellingtoresolveaspectrumoflengthscaleswhilesimul- taneouslyacquiringgeometricinformation;andsphericalmeantechnique multi-compartment(SMTmc)(Kadenetal.,2016),amethodformicro- scopicdiffusionanisotropyimagingthatisunconfoundedbyeffectsof fibrecrossingsandorientationdispersion.

Usually based on multi-shell acquisitions with several diffusion weightings(Andersson andSotiropoulos,2015; Jbabdietal., 2012), these modelscan be broadlysplitinto “signal” and “tissue” models (Alexanderetal.,2019).Signalrepresentations,suchasDTIandDKI, describe the diffusion signal behaviour in a voxel without assump- tions about underlying tissue, but asthe estimated parameters lack specificity,theircharacterisationof tissuemicrostructureremains in- direct(JelescuandBudde,2017).Tissuemodels(NODDI,RSI,SMT-mc, andWMTI)involveestimationsof thegeometryofunderlying tissue (Novikovetal.,2019),whichmayprovidehigherbiologicalspecificity andmoreprecisemeasuresofwhitemattermicrostructureandarchitec- ture(JelescuandBudde,2017;Novikovetal.,2019;Pinesetal.,2020).

However,despitetissuemodelsbeingdesignedtoincreasespecificity, theystillrequireassumptionsabouttheunderlyingmicrostructuretobe accurate.

Building on the opportunities from big data in neuroimaging (SmithandNichols,2018),agerelatedbrainchangeshaverecentlybeen investigatedusingmachinelearningtechniquessuchasbrainagepre- diction;theestimationofthe‘biological’ageofabrainbasedonneu- roimagingdata(Coleetal.,2018;deLangeetal.,2019;Kaufmannetal., 2019;Frankeetal.,2010;Richardetal.,2018).Predictingtheageof abrain,andsubsequentlylookingatthedisparitybetweenpredicted andchronologicalage,canidentifyimportantindividualisedmarkersof brainintegritythatmayrevealriskofneurologicaland/orneuropsychi- atricdisorders(Kaufmannetal.,2019).Whilebrainagepredictionhas grownmorepopularinrecentyears,moststudieshaveusedgreymat- terfeaturesforbrainageprediction,whileonlyfewhaveexclusively (Tønnesen etal.,2020),orpartly(Cole,2019;Maximovetal.,2020; Richardetal.,2018;Smithetal.,2019a,b)utiliseddMRI.However,the brain-agepredictionaccuracyofadvanceddiffusionmodelssuchasRSI andNODDIarenotknown.

Includingcross-sectionalandlongitudinaldataobtained from573 healthyindividuals(with702 multi-shelldMRIdatasets)aged18–94 years,theprimaryaimofthisstudywastoofferacomprehensivede- scriptionofnormativeage-relatedwhitemattertrajectoriesinadulthood bycomparingrelevantcurveparameterssuchaskeydeflectionpoints andrateofchangeaswellasagepredictionaccuracyofdifferentdMRI metrics,withaparticularfocusonrelativelynovelparametersbased onadvanced(DKI,NODDI,RSI,SMTmc,andWMTI)andconventional (DTI)diffusionmodelsofwhitemattercoherenceandmicrostructure.

First,weestimatedthetrajectoriesofeachofthediffusionmetrics acrosstheagerange.Secondly,weutilisedthreeseparatemethodsto comparetheage-sensitivityofthediffusionmodels:i)weusedlinear

Table1

Demographicsofdescriptivestatisticspertainingtothestudysample.N referstodatasets.

Age

Mean ± SD Min Max Full (mixed) sample ( n = 702) 50.86 ± 16.61 18.52 94.67 Male (301, 42.88%) 49.45 ± 17.48 18.52 92.05 Female (401, 57.12%) 51.92 ± 15.86 18.63 94.67 Cross-sectional sample ( n = 444) 47.61 ± 16.59 18.52 94.67 Male (214, 48.20%) 46.75 ± 16.71 18.52 92.05 Female (230, 51.80%) 48.57 ± 16.51 18.63 94.67 Longitudinal sample ( n = 258) 56.60 ± 15.03 20.30 85.82 Male (44, 35.11%) 55.72 ± 17.78 20.30 85.82 Female (85, 65.89%) 55.65 ± 13.70 23.37 80.62

mixedeffect(lme)modelsincludingage,sex,andtimepoint,ii)foreach model,we ranfitswithandwithoutagetermsandcomparedthefit likelihoodvaluesusingWilk’stheorem(Wilks,1938),iii)weusedma- chinelearningtopredictagebasedonthediffusionmetrics,andcom- paredthepredictionaccuracyofthemodels.Thirdly,welookedatthe derivativesofeachfunctionofthelmemodels’agecurvetoidentifythe pointofchangeintrajectoryforeachdiffusionmetric.Basedonprevi- ousworkcharacterisingagedifferencesandlongitudinalchangeswith arangeofdiffusionMRImetrics(Benitezetal.,2018;Falangolaetal., 2008; Jelescuetal., 2015;Kodiweeraetal.,2016;Reasetal.,2017; Westlyeetal.,2010),weexpectedtheincludedmetricstoshowcurvi- linearrelationshipswithage,withvaryingtrajectoriesanddeflection points possiblyreflectingdifferentialinvolvementandrateofchange oftheputativebiologicalunderpinningsduringthedifferentphasesof brainageing.

2. Methodsandmaterial 2.1. Descriptionofsample

Theinitialsampleincluded754multi-shelldatasetsofhealthypar- ticipantsfrom twointegratedstudies;theTematiskOmrådePsykoser (TOP)(Tønnesenetal., 2018)andStrokeMRI(Richardetal., 2018).

Followingtheremovalof52datasets afterqualitychecking(QC,see Section2.4),thefinalsamplecomprised702datasetsfrom573individ- uals,includinglongitudinaldata(twotime-pointswithmeaninterval= 15.2months)for129oftheparticipants.Demographicinformationis summarisedinTable1andFig.1.

Exclusioncriteriaincludedneurologicalandmentaldisorders,and previous headtrauma. Ethicalguidelinesfollowedthoseinlinewith theDeclarationofHelsinki.ThestudyhasbeenapprovedbytheRe- gionalEthicsCommitteeandallparticipantsprovidedwritteninformed consent.

2.2. MRIacquisition

Imaging wasperformed atOsloUniversityHospitalon aGeneral ElectricDiscoveryMR7503Tscannerwitha32-channelheadcoil.dMRI data wereacquiredwith aspinecho planarimaging(EPI)sequence withthefollowingparameters:TR/TE/flipangle:8150ms/83.1ms/90°, FOV:256×256mm,slicethickness:2mm,in-planeresolution:2mm.

We obtained 10 vol of b= 0anddiffusionweighted dataalong 60 (b=1000s/mm2)and30(b=2000s/mm2)diffusionweightedvolumes.

Inaddition,7b=0volwithreversedphase-encodingdirectionwereac- quiredforcorrectionofsusceptibilitydistortions.

2.3. DiffusionMRIprocessing

Processing steps followed a previously described pipeline (Maximovetal.,2019),includingnoisecorrection(Veraartetal.,2016),

(3)

Fig.1. Intervalbetweentimepoint1andtimepoint2forcompletelongitudinalsample,n=258(129subjects).Histogramrepresentingdensityofdatapoints.

Gibbsringingcorrection(Kellneretal.,2016),correctionsforsuscepti- bilityinduceddistortions,headmovementsandeddycurrentinduced distortions using topup (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) andeddy (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson and Sotiropoulos, 2016). Isotropic smoothing was carried out with a Gaussian kernel of 1 mm3 implemented in the FSL func- tion fslmaths. DTI was estimated using FSL tool dtifit and ex- cluded the b = 2000 shell from the fit. Employing the multi-shell data, DKI and WMTI metrics were estimated using Matlab code (https://github.com/NYU-DiffusionMRI/DESIGNER),(Fieremansetal., 2011). NODDI metrics were derived using AMICO in Matlab (https://github.com/daducci/AMICO). SMT mc metrics were esti- mated with the original code(https://github.com/ekaden/smt). RSI metricswereestimatedusingin-houseMatlabtools.

Weselected20scalarmetricsfromthesixmodels(DTI,DKI,NODDI, RSI, SMTmc, WMTI) based on recentstudies (Benitez et al., 2018; DeSantisetal.,2011;Hopeetal.,2019;Jelescuetal.,2015;Kadenetal., 2016;Maximovetal.,2019;Pinesetal.,2020).Modelswerealsose- lectedbasedonfeasibilityinrelationtoouracquisitionprotocoland availabilityof opensourcescripts. Fig.2showseachof theincluded metricsforone participant,forillustrative purposes.Allmetricsand their corresponding abbreviationsare summarisedin Supplementary Table1).Brain age predictionwas performedforeach model, using allavailablemetricsextractedfromarangeofregions-of-interest(see Section2.5).

2.4. Qualitycheckingprocedure

WeimplementedarigorousQCproceduretoensuredataqualitywas notcontaminatedbymotion,noise,orartefacts.Usingapublishedap- proach(Roalfetal.,2016),wederivedvariousqualityassurance(QA) metrics(seeSupplementarymaterial;SITable2),includingtemporal- signal-to-noise-ratio(TSNR). Outliersweremanuallycheckedandre- movedif deemed tohave unsatisfactory dataquality. A total of 52

datasetswereremoved,leavingthedatasetatn=702scans.Thisdataset wasputthroughthesamevisualinspection.Asanadditionalstep,im- agesweremanuallyinspectedifTSNRZscoresdeviatedminusorplus 2.5standarddeviationsfromthemean.Followingthisstep,thefinal datasetremainedat702scansfrom573individuals.

2.5. Tract-based-spatial-statistics

VoxelwisestatisticalanalysisoftheFAdatawascarriedoutusing Tract-BasedSpatialStatistics(TBSS)(Smithetal.,2006),aspartofFSL (Smithetal.,2004).First,FAimageswerebrain-extractedusingBET (Smith,2002)andalignedintoacommonspace(FMRI58_FAtemplate) using thenonlinear registrationtoolFNIRT (Andersson etal., 2010; Jenkinsonetal.,2012),whichusesab-splinerepresentationofthereg- istrationwarpfield(Rueckertetal.,1999).Next,themeanFAimageof allsubjectswascreatedandthinnedtocreateameanFAskeletonthat representsthecentresofalltractscommontothegroup.Eachsubject’s alignedFAdatawas thenprojectedontothisskeleton.ThemeanFA skeletonwasthresholdedatFA>0.2.Thisprocedurewasrepeatedfor allmetrics.fslmeantswasusedtoextractthemeanskeletonand20re- gionsofinterest(ROI)basedonaprobabilisticwhitematteratlas(JHU) (Huaetal.,2008)foreachmetric.Includingthemeanskeletonvalues, 420featuresperindividualwerederived(20metricsx20+1ROIs).Of these,20metricswereusedforfittingofagecurvetrajectories,lmeanal- ysis,andWilk’stheoremanalysis,whileall420MRIfeatureswereused forageprediction. NumberofMRIfeaturescanbe foundinTable4. Additionalvoxelwiseanalysiswerecarriedoutonthe573participants (excludinglongitudinalmeasures)usingtheFSLtoolRandomisewith permutation-basedstatistics (Winkleretal.,2014) andthreshold-free cluster enhancementmethod(TFCE;SmithandNichols,2009).5000 permutationswererun,whereeachdiffusionmetricwastestedforits associationwithage.TBSSfillwasusedtocreatevoxelwisestatistical mapsforeachmetric,whichcanbefoundinSIFig.10.

(4)

Fig.2. Diffusionmetricsfromoneparticipant.DTI:FA(fractionalanisotropy),MD(meandiffusivity),AD(axialdiffusivity),RD(radialdiffusivity).DKI:AK(axial kurtosis),MK(meankurtosis),RK(radialkurtosis).NODDI:ICVF(intracellularvolumefraction),ISOVF(isotropicvolumefraction),OD(orientaldispersion).RSI:

CI(cellularindex),Fine(FAfinescale/slowcompartment),rD(restricteddiffusivitycoefficient).SMTmc:exMD(extracellularspace),exTr(extra-cellularspace transverse),Intra(intraaxonaldiffusivity).WMTI:Awf(axonalwaterfraction),aEAD,aIAD(axialextraandintraaxonaldiffusivity),rEAD(radialextraaxonal diffusivity).

2.6. Diffusionmetricreproducibility

Thevalidityandsensitivityofthedifferentdiffusionmodelsessen- tiallyrelyontherichness,qualityandspecificpropertiesofthedata usedformodelfitting.Inordertoassessthereproducibilityofthein- cludedadvancedmetrics(Maximovetal.,2015),weestimatedthedMRI modelsusingdataobtainedfromdifferentacquisitionschemesvarying thenumberofdirectionsandmaximumbvaluein23healthypartici- pantswithmeanage35.77years(SD=8.37,56.5%women).Thisrep- resentedasub-sampleofthefullsample.Thefollowingthreeacquisi- tionschemeswerecompared:i)b=[1000,2000]with[60,30]directions, whichisidenticaltotheacquisitionschemeusedinthemainanalysis, ii)b=[1000,2000]with[60,60]directionsandiii)b=[1000,2000,3000]

with[60,60,60]directions.Foreachschemeweprocessedthedataus- inganidenticalpipeline(Maximovetal.,2019)asdescribedaboveand extractedthemeanskeletonvaluesforeachmetric.Thecomparisonsbe- tweenacquisitionprotocolswereperformedusingboxplots(SIFig.4), scatterplotswithageasafunctionofmeanskeletonvalues(SIFig.5), andPearson’scorrelationcoefficientplots,whereprotocol1isfactored byprotocol3(SIFig.6).

2.7. Statisticalanalysis

Allstatisticalanalyseswerecarriedoutusingthestatisticalenviron- mentR,version3.6.0(www.r-project.org/)(RCoreTeam,2012)and Python3.7.0(www.python.org/).

2.8. Linearmixedeffectsmodels(lme)

Toinvestigatetherelationshipbetweenageandglobalmeanskele- tonvaluesforeachdiffusionmetric,lmeanalyseswereperformedusing thelmefunction(BatesandPinheiro,1998)inR(RCoreTeam,2012).

Infittingthemodel,wescaled(znormalised)eachvariableandentered age,orthogonalisedage2,sex,andtimepoint(TP)asfixedeffects.Sub- jectIDwasenteredasarandomeffect.ForeachdiffusionmetricM,we employedthefollowingfunction:

𝑀=𝐴+𝐵×𝐴𝑔𝑒+𝐶 × 𝐴𝑔𝑒2+𝑆𝑒𝑥+𝑇𝑃 (1)

whereAistheintercept,Bistheagecoefficient,andCisthecoefficient oftheorthogonalisedquadraticageterm(expressedaspoly(age,2)[,2]

inR).Agecurveswereobtainedwithpredictionsfromthefittedmodel usingthepredictfunctioninRandusedforagecurvetrajectoryfigures.

Visualinspection ofresidual plotsdidnot revealany obviousdevia- tionsfrom homoscedasticityornormality. Thesignificancethreshold wassetatp<0.05,andtheresultswerecorrectedformultiplecompar- isonsusingthefalsediscoveryrate(FDR)adjustment(Benjaminiand Hochberg,1995).

Toinvestigatetherateofchangeforeachoftheagecurvesatany point, wecalculatedtheirderivativesusing numericaldifferentiation withfinitedifferences(BurdenandFaires,2011).Tocomparetheage- sensitivityofthemodels,weranlmefitswithandwithoutageterms,and calculatedthedifferenceinlikelihoodratios(GloverandDixon,2004).

ThesignificanceoftheagedependencewascalculatedusingWilk’sthe- orem(Wilks,1938)as√

2(𝐿2𝐿1),whereL2isthelikelihoodratio

(5)

Table2 Linearmixedeffectmodelresultsforeachmetric,wherevariablesaredisplayedwithcorrespondingfixedeffectestimates(𝛽),(standarderror),t-statistic,andFDRcorrectedPvalue. FAMDADRDDKIakDKImkDKIrkNODDIicvfNODDIisovfNODDIODRSICIRSIfafineRSIrDSMTmcextramdSMTmcextratransSMTmcintraWMTIawfWMTIaxEADWMTIaxIADWMTIradEAD Age0.66∗∗∗0.46∗∗∗0.030.59∗∗∗0.120.24∗∗∗0.32∗∗∗0.33∗∗∗0.48∗∗∗0.67∗∗∗0.48∗∗∗0.69∗∗∗0.54∗∗∗0.50∗∗∗0.56∗∗∗0.26∗∗∗0.49∗∗∗0.15∗∗∗0.58∗∗∗0.57∗∗∗ (0.03)(0.04)(0.04)(0.03)(0.04)(0.04)(0.04)(0.04)(0.04)(0.03)(0.04)(0.03)(0.04)(0.04)(0.03)(0.04)(0.04)(0.04)(0.04)(0.03) 20.7613.190.7118.023.215.958.098.5213.3121.6213.7921.9714.8914.3116.666.6813.333.5116.4317.11 4.96x10413.92x102412.95x10350.012.56x10079.15x10124.29×10132.02x10249.16x10431.44x10251.87×10433.60x10288.41×10273.01x10327.14x10091.87x10246.16×10031.02x10312.97x1033 Age20.17∗∗∗0.34∗∗∗0.40∗∗∗0.29∗∗∗0.44∗∗∗0.26∗∗∗0.18∗∗∗0.33∗∗∗0.100.080.37∗∗∗0.15∗∗∗0.110.21∗∗∗0.35∗∗∗0.27∗∗∗0.26∗∗∗0.14∗∗∗0.110.21∗∗∗ (0.03)(0.03)(0.04)(0.03)(0.04)(0.04)(0.04)(0.04)(0.03)(0.03)(0.03)(0.03)(0.03)(0.03)(0.03)(0.04)(0.03)(0.04)(0.03)(0.03) 5.5710.3010.639.3712.347.154.779.043.112.6611.044.933.166.4610.997.427.513.633.366.91 1.48x10062.22x10176.84x10184.00x10154.47x10221.26x10095.00x10055.00x10140.020.093.46x10192.60×10050.022.15x10084.59x10193.12×10109.88x10116.16x10030.012.17x1009 Sex0.09∗∗0.060.030.070.14∗∗∗0.16∗∗∗0.13∗∗∗0.080.100.070.020.050.080.100.030.15∗∗∗0.070.060.030.09 (0.03)(0.03)(0.04)(0.03)(0.04)(0.04)(0.04)(0.04)(0.03)(0.03)(0.03)(0.03)(0.03)(0.03)(0.03)(0.04)(0.03)(0.04)(0.03)(0.03) 3.121.750.782.164.004.193.482.202.902.480.621.552.242.901.074.101.881.561.002.86 1.52x10020.5510.221.06x10033.54x10044.53x10030.190.030.1010.820.180.0314.91x10040.410.8110.03 Timepoint0.010.020.030.010.070.040.020.040.050.020.030.0010.010.060.020.040.030.030.020.05 (0.01)(0.01)(0.02)(0.01)(0.03)(0.03)(0.03)(0.03)(0.03)(0.01)(0.01)(0.01)(0.02)(0.03)(0.01)(0.03)(0.02)(0.03)(0.02)(0.02) 0.881.551.721.022.361.210.641.621.641.331.950.050.302.311.441.321.411.030.662.19 10.620.8910.10110.570.520.930.35110.1110.950.80110.15 Observations702702702702702702702702702702702702702702702702702702702702 LogLikelihood651.72741.08853.38671.25885.78941.80945.41885.92882.34678.79748.66662.96829.12832.39703.69932.36849.65965.60816.35795.04 AkaikeInf.Crit.1317.441496.151720.761356.501785.561897.601904.811785.841778.691371.581511.331339.911672.241678.791421.391878.731713.301945.201646.691604.09 BayesianInf.Crit.1349.271527.981752.591388.331817.391929.431936.641817.671810.521403.401543.151371.741704.061710.621453.211910.551745.131977.021678.521635.92 Note:Age2representstheorthogonalisedpolynomialquadraticageterm(Eq.(1)). p<0.05;∗∗p<0.01;∗∗∗p<0.001.

obtainedfromthemodelswithageterms,andL1isthelikelihoodratio obtainedfromthemodelswithoutageterms.

2.9. Brain-ageprediction

TheXGBoostregressor modelwas usedtorunthebrainagepre- diction (https://xgboost.readthedocs.io/en/latest/python/index.html), including a decision-tree-based ensemble algorithm that has been used in recent large-scale brain age studies(de Lange et al., 2019; Kaufmannetal.,2019).Parametersweresettomaxdepth=3,num- berof estimators=100,andlearningrate=0.1(defaults).Foreach diffusionmodel(DTI,DKI,NODDI,RSI,SMTmc,WMTI),predictedage wasestimatedina10-foldcrossvalidation,assigningamodel-specific brainageestimate toeach individual,aswellasamultimodal brain ageestimatebasedonalldiffusionfeatures.Toinvestigatethepredic- tionaccuracyofeachmodel,correlationanalyseswererunforpredicted versuschronologicalage,andmodel-specificR2,rootmeansquareerror (RMSE)andmeanabsoluteerror(MAE)werecalculated.Tostatistically comparethepredictionaccuracyofthemodels,Ztestsforcorrelated samples(Zimmerman,2012)wererunon themodel-specific correla- tionsbetween predictedandchronologicalage inapairwisemanner using

𝑍=(𝛽m1𝛽m2)∕

𝜎m12 +𝜎2m2−2𝜌𝜎m1𝜎m2,

where“m1” and“m2” representmodel1andmodel2,the𝛽termsrep- resentthebetavaluefromtheregressionfit,the𝜎termsrepresenttheir errors,and𝜌representsthecorrelationbetweenthetwosetsofassocia- tions.Inordertoassessthecomplementaryvalueofthedifferentmod- els,wecomputed thecorrelationsbetweenthebrainagepredictions (Fig.6).Thepredictionswerefirstcorrected forage-biasusinglinear models(Leetal.,2018),andtheresidualswereusedinthecorrelation analysis.

Toevaluatetheimportanceofeachdiffusionmodalityinthemul- timodalmodel,werananadditionalpredictionmodelincludingonly mean-skeletonvaluestoreducethenumberofhighlycorrelatedfeatures intheregressorinput,andcalculateda)theproportionofthetotalweight contributedbyeachmodality,whereweightrepresentsthenumberof timesafeatureisusedtosplitthedataacrossalltrees,andb)gainval- ues,whichrepresenttheimprovementinaccuracyaddedbyafeature tothebranchesitison.Toassessthesignificanceofthegeneralmodel performance,averageRMSEwascalculatedforthemultimodalmodel usingcrossvalidationwithtensplitsandtenrepetitionsandcompared toanulldistributioncalculatedfrom1000permutations.

3. Results

3.1. Diffusionmetricreproducibility

Thereproducibilityoftheestimateddiffusionmetricsbasedondata obtainedwithdifferentacquisitionschemes(describedin2.6)revealed overallhighcorrelationsbetweenthemeanskeletonvaluesforallthe modelmetrics.HighestoverallreproducibilitywasobservedforNODDI OD(r(22)=0.96,p<0.001)andRSIrD(r(22)=0.97,p<0.001).The lowestreproducibilitywasobservedforWMTIradEAD(r(22)=0.44, p=0.597).SupplementaryTable4andSupplementaryFigs.4–7show theresultsfromthecomparisons.

3.2. Agetrajectories

Fig.3showsthelinearmixedeffectmodel-derived agecurvesfor eachdiffusionmetricplottedasafunctionofage,whereagecurvesare fittedwiththepredictedvaluesofthelmemodels.Fig.4showsalllme model-derivedagecurvesfromFig.3instandardisedforminoneplot.

Fig.5showsthederivativesofthelmefits,providingtheestimatedrate

(6)

Fig. 3. Age curves where each diffusion metric’s standardised(z-score)meanskeletonvalue(y-axis)is plottedasafunctionofage(x-axis).Fittedlinesmade withlme-derivedpredictedvalues.Shadedareasrep- resent95%CI.Pointsconnectedbylinesrepresent longitudinaldatawherecircleisTP1andtriangleis TP2.Malesubjectsarerepresentedbypinkandfe- malesubjectsbygreen.

ofchangeateverypoint(ofage),includingthepointofchangeintrajec- toryforeachmodelcurveandthesteepnessoftheturningpoint.Corre- lationsbetweenthemetricsareavailableinthesupplementarymaterial (SIFigs.2and3)forbothrawandstandardisedvaluesrespectively.

3.3. Comparingagecurves

Fig.3showstheestimatedagecurvesforallmetrics.Briefly,FAde- creasedsteadilyaftertheageof30,withasteeperdeclineaftertheage

of50.MD,AD,andRDfollowedareverseprofile,withdecreasesindif- fusivityuntilthe40s,wherebythetrajectoriessubsequentlyincreased thereafter. DKImetricsrevealedcurvilineartrajectories,withNODDI ICVF,RSICI,SMTmcintra,andWMTIawfmetricsfollowingsimilar trajectories.RSIrD,NODDIISOFV,RSIFAfine,andWMTIaxIADmet- ricsfolloweddecreasingtrajectoriesfromtheoffset.SMTmcextramd andextratrans,andWMTIradEADfollowedsimilartrajectoriestoMD andRD.NODDIODrevealedasteadyincreaseuntilolderagewherethe slopestabilisedthereafter.Lastly,WMTIaxEADshowedu-trajectories.

(7)

Fig.3. Continued

3.4. Agesensitivityestimatedusinglmemodels

Resultsfromthelmemodelsrevealedsignificantmaineffectsofage ontheglobalmeanskeletonvaluesforalldiffusionmetrics(seeTable2).

Anexaminationofthefixedeffectsestimates(𝛽)andt-statisticsforthe agetermallowsfor interpretationof theextentanddirectionof the linearassociationwithage.Overall,theFAfinecompartmentofthe RSImodelwasmostsensitivetoage(𝛽(125)=−0.69,t=−21.97,p<

0.001).NODDIODwasthesecondmostsensitivetoage(𝛽(125)=0.67,

t=21.62,p< 0.001).Themodelleastsensitivetoagewas DTIAD (𝛽(125)=0.03,t=0.71,p=1).ForconventionalDTImetrics,FAwas themostagesensitive(𝛽(125)=−0.66,t=−20.76,p<0.001).Nomain effectsoftimepointsurvivedcorrectionformultiplecomparisons.

3.5. AgesensitivityestimatedusingWilk’stheorem

Table 3 showsthe strength of theoverallage variationfor each metric estimatedbythedifferencein likelihoodvalues (describedin

(8)

Fig.4.Plotdisplayingalllme-modelderivedagecurvesfromFig.3instandardisedform.

Table3.

Likelihoodvaluesfromthelmemodelswithoutageterms(L1)andwithageterms(L2).The significanceoftheagedependenceisestimatedbythedifferenceinlikelihoodvaluesusing Wilk’stheorem.FDRcorrectedp-values=pcorr.

Model L 1 L 2 Difference (z) p-value p corr

DTI FA 815.86 651.72 18.12 5.22 ×10 72 1.04 ×10 70 MD 848.36 741.08 14.65 2.55 ×10 47 5.10 ×10 46 AD 900.66 853.38 9.72 2.93 ×10 21 5.86 ×10 20 RD 820.44 671.25 17.27 1.62 ×10 65 3.24 ×10 64 DKI AK 952.44 885.78 11.55 1.12 ×10 29 2.25 ×10 28 MK 977.09 941.80 8.40 4.71 ×10 16 9.42 ×10 15 RK 981.65 945.41 8.51 1.83 ×10 16 3.65 ×10 15 NODDI ICVF 948.54 885.92 11.19 6.40 ×10 28 1.28 ×10 26 ISOVF 957.61 882.34 12.27 2.06 ×10 33 4.13 ×10 32 OD 850.84 678.79 18.55 1.90 ×10 75 3.80 ×10 74 RSI CI 866.73 748.66 15.37 5.28 ×10 52 1.06 ×10 50 FA fine 839.53 662.96 18.79 2.07 ×10 77 4.15 ×10 76 rD 922.24 829.12 13.65 3.62 ×10 41 7.24 ×10 40 SMT mc Extra md 929.01 832.39 13.90 1.10 ×10 42 2.20 ×10 41 Extra trans 848.79 703.69 17.03 9.71 ×10 64 1.94 ×10 62 Intra 973.21 932.36 9.04 1.82 ×10 18 3.64 ×10 17 WMTI AWF 942.66 846.37 13.88 1.52 ×10 43 3.04 ×10 41 axEAD 973.15 962.32 4.65 1.98 ×10 05 3.97 ×10 04 axIAD 930.26 816.35 15.09 3.38 ×10 50 6.76 ×10 49 radEAD 922.92 795.04 15.99 2.91 ×10 56 5.81 ×10 55

Section2.8).Allmetricsshowedsignificantagedependence,withRSI FAfineasthemostagesensitive(z=18.79),followedbyNODDIOD (z=18.55)andDTI-basedFA(z=18.12).WMTIaxEAD(z=4.65)was theleastage-dependantmetric.

3.6. Agesensitivityestimatedusingbrainage

The model performances for the multimodal and model-specific brainagepredictionsareshowninTable4.SIFigs.8and9showtheas- sociationsbetweenpredictedageandchronologicalageforeachofthe models.Fig.6showsthepairwisecorrelationsbetweenpredictedage foreachmodel.Pairwisedifferencesintheagepredictionaccuracyof themodelsareshowninFigs.7and8.SIFig.1showstheRMSEofthe

multimodalmodelpredictioncomparedtoanulldistributionobtained fromcalculating1000permutations.

AsvisiblefromTable4,themultimodalmodelshowedthemostac- curateageprediction(r=0.85,p<0.001,95%CI=[0.83,0.87]),while theDKImodelperformedtheworst(r=0.68,p<0.001,95%CI=[0.64, 0.72]).AsshowninFigs.7and8,themultimodalpredictionaccuracy wassignificantlyhigherthantheaccuracyofeachof theothermod- els,withthelargestdifferenceseenbetweenthemultimodalmodeland DKI.ThedifferencesinpredictionaccuracybetweenDTIandRSI,and WMTIandNODDIdidnotsurvivecorrectionformultiplecomparisons.

Fig.6showedcorrelationcoefficientsofmeanr=0.59(Std=0.09) betweentheDTI,RSI,NODDI,SMTandWMTIpredictions,whilethe DKIshowedlowercorrelationswiththeothermodelpredictions(mean r=0.29,Std=0.04).

(9)

Fig.5. Thederivativeforeachdiffusionmodel,providingtheestimatedrateofchangeateverypoint.Thepointonthex-axiswherethefittedlinecrosses0onthe y-axisrepresentstheturningpointoftheagetrajectoryforeachmetric.

Table4

Number ofMRIvariables(correspondingtothesumofmetricfeatures),rootmean squareerror(RMSE),meanabsoluteerror(MAE),correlationbetweenpredictedand chronologicalage(Pearson’sr),andR2foreachofthemodels.CI=confidenceinterval.

Model MRI variables RMSE MAE r [95% CI] R 2[95% CI]

DTI 84 9.35 7.30 0.83 [0.80, 0.85] 0.68 [0.64, 0.72]

DKI 63 12.19 9.82 0.68 [0.64, 0.72] 0.46 [0.41,0.52]

NODDI 63 9.15 7.31 0.83 [0.81, 0.86] 0.70 [0.65, 0.74]

RSI 63 9.84 7.68 0.81 [0.78, 0.83] 0.65 [0.61,0.69]

SMT mc 63 11.30 9.01 0.73 [0.70, 0.76] 0.54 [0.50, 0.58]

WMTI 84 9.37 7.40 0.83 [0.80, 0.85] 0.68 [0.64, 0.72]

Multimodal 420 8.80 6.99 0.85 [0.83, 0.87] 0.72 [0.69, 0.76]

Toevaluatetherelativeimportanceofeachmodality,werananaddi- tionalmultimodalmodelincludingonlymean-skeletonvaluestoreduce thenumberofhighlycorrelatedfeaturesintheregressorinput.Table5 showsthetotalgainandtheproportionofweightcontributedbyeach modalitytothetotalweight, indicatingtheirrelativecontributionin themodeltraining.Theresultsrevealedthatthemachinefavouredthe NODDImodelinthetraining.

4. Discussion

Ageing confers a range of structural brain alterations, affecting micro- andmacrostructuralproperties of the neurocircuitrysupport-

ingcognitiveandothercomplexbrainfunctions.Inthecurrentmixed cross-sectionalandlongitudinalstudy,wecomparedagesensitivityand brainwhitematteragetrajectoriesacrosstheadultlifespanbasedon advanced andconventional dMRImodels.Theresults fromourcom- prehensive analysisapproach, includingage-curve trajectories,linear mixedeffectsmodels,Wilk’stheoremanalysis,andbrainageprediction, showedhighagesensitivityforalldiffusionmetrics,withcomparable sensitivitybetweenthehighestperformingadvanceddMRImodelsand conventionalDTI,andamoderatebenefitofincludingallmetricsinthe samemodel.Themixedeffectsanalysesandcorrespondingderivatives revealedvariationsinagetrajectoriesbetweenmodels,indicatingthat theymaybe sensitivetodifferentunderlyingaspectsofwhitematter ageing.

(10)

Fig.6.Correlationmatrixforpredictedbrainageofeachmodalityandthe multimodalmodel.Toaccountforage-bias(Leetal.,2018;Smithetal.,2019), thepredictedagevalueswereresidualisedforchronologicalageusinglinear models.

Table5

Featureimportanceevaluatedusinga reducedmultimodal modelthat included only mean skeleton values for each modality.Number of MRIvariables(correspondingtothe sumofmetricfeatures),percentagecontributiontothetotal weight,andtotalgainforeachmodality.

Model MRI variables % of total weight Total gain

DTI 4 20.09 163473.25

DKI 3 5.13 41747.63

NODDI 3 45.48 370129.31

RSI 3 4.85 39463.11

SMT mc 3 11.74 95534.98

WMTI 4 12.72 103545.15

Fig.7.Matrixshowingpairwisedifferencesbetweenthemodelpredictionaccu- racies(correlationsbetweenpredictedandchronologicalage),basedonztests forcorrelatedsamples.

OurresultsshowedthatFAplateauedaroundthethirddecadewith a steadydecline in slopefollowing theage of ~40,andanacceler- ateddecreaseinsenescence(Fig.3).TheotherDTImetricsofMD,AD, andRDrevealeddecreasesindiffusivityupuntilthe40–50-yearage mark,wherethetrajectoriessubsequentlyincreasefollowingasteady period.Whiletheseresultstoalargeextentcorrespondwithtrajecto- riesobservedinpreviousstudies(Coxetal.,2016;Davisetal.,2009; Westlyeetal.,2010),amoredefinedinvertedU-shape(Westlyeetal., 2010)waslessprominentinourstudy,likelyduetoalackofyounger participantsbelowtheage of 20.Interestingly,FAbasedontherel- atively simpleDTI modelutilisingonly single-shell dataoffered one of thehighest sensitivitiestoage,supportingthat DTI providessen- sitivemeasuresofgrosswhitematteranatomyandneuropathological changes(Alexanderetal.,2008).Thecharacteristiccurvilineartrajec- toriesoflifespandifferencesinconventionalDTImetrics(Westlyeetal., 2010)havepreviouslybeensuggestedtoreflectacombinationofpro-

Fig.8. Log10(p)valuesofthepairwisedifferencesbetweenthemodelpredictionaccuracies.Highernumbersrepresentmoresignificantdifferences.Left:uncorrected p-values.Right:P-valuescorrectedformultiplecomparisonsusingFDR,withnon-significant(>0.05)valuesmaskedout.

(11)

tractedmyelin-relatedmaturationduringchildhood,adolescenceand earlyadulthood (Lebel et al., 2008; Tamnes et al., 2010) and sub- sequentmyelin lossduring laterstagesof adulthoodandsenescence (Bartzokisetal.,2004).However,DTImetricsareunabletodifferentiate betweenintra-andextra-axonalcompartments,and,inadditiontothe idiosyncraticchangesinmyeloarchitecture,theymaybeinfluencedby individualdifferencesandchangesingrossfibrearchitecture(e.g.cross- ingfibres)andaxonalpackinganddensity(Paus,2010;Simmondsetal., 2014).ThespecificbiologicalinterpretationofDTImetricsessentially dependsuponthelocalfibrearchitecture,andsignalchangesfromDTI requirecareful interpretation,astheexactneurobiologicalunderpin- ningscannotbedirectlyinferred.Whilespeculative,utilisingadvanced dMRImodelsinadditiontoconventionalDTImayprovidemorespeci- ficityintheinterpretationoftheresults,andimprovethedescriptive precisionofthetissuepathologybydisentanglingthevariousbiological sourcesthatarehappeningconcurrently.

WhileseveraloftheadvanceddMRImodelsshowedcomparablere- sultstoDTIintermsofagesensitivity,theyalsoshowedvisiblydifferent agetrajectories(Fig.3),includingvariationinturningpoints(Fig.4), indicatingtheageatwhichanisotropyanddiffusivitymeasureschange direction,andgradientofchange(Fig.5),indicatingrateofdecline.The variationinturningpointsandgradientofchangecalculatedusingthe derivatesofeachmodelinformsusabouttheestimatedrateofchangeat specificages,inadditiontothedifferentialsensitivitybetweendifferent metricsduringdifferentlifephases.Althoughdiffusionimagingcannot givedirectaccesstoneuronalprocessesonacellularlevel,thevarying estimatedtrajectoriesinadvanceddMRImodelspotentiallyreflectdif- ferentialinvolvementoftheputativebiologicalunderpinningsduring thedifferentphasesofbrainageing.Thus,metric-specificdifferences mayreflectage-relatedpathologicalchangesbehindeachdMRImodel, helpingusbetterpinpointtheageatwhichdeclineinwhitemattermi- crostructurebegins,whichhasimportantimplicationsforinterventive strategiesaimedatpromotinghealthyageing.

AlthoughrecentresearchhasvalidatedFAandRDmetricsofDTIas beingsensitivemarkerstomyelin(LazariandLipp,2020),cautionmust beexertedininterpretingspecificunderlyingbiologyonthebasisofDTI alone(Novikovetal.,2018).Withthisinmind,combiningtissuemodels suchasNODDI,WMTI,RSI,andSMTmcmayholdpromiseinjointlyre- flectingmeasuresmorerelatabletotheneurobiologicalunderpinnings ofbrainageing.TheWMTImetricsforexamplehavebeenvalidatedfor reflectingunderlyingbiologybothinvivo(Jelescuetal.,2015,2016) andexvivo(Falangolaetal.,2014;Kelmetal.,2016).WMTIawfwas foundtorelatetoaxonaldensity,whereasWMTIradEADtosomeex- tentdescribesthedegreeofmyelination(Kelmetal.,2016)andrelates totheextracellularenvironmentfilledwithinterstitialfluidandcircu- latingmacromolecules,aswellasbloodvesselsandperivascularspaces (NicholsonandHrabětová,2017).TheparametermapsfromtheNODDI modelhavebeenclaimedtoexhibitaspatialpatternof tissuedistri- butionconsistentwiththeknownbrainanatomy(Zhangetal.,2012), with existingmaps showing theexpected pattern of neurite density (Jespersenetal.,2010),servingasanexampleofthefeasibilityprovided byadvanceddiffusionmodelstodisentangleneuritedensityandorien- tationdispersion,twomajorfactorscontributingtoFA(Zhangetal., 2012).TheRSImodeldiametercalculationshavebeenshowntocorre- spondwiththediameterofunmyelinatedandmyelinatedaxonsinthe ratbrain(Whiteetal.,2013),suggestingadirectbiologicalinterpreta- tion.Likewise,histologicalanalyseshaveshownthattheSMTmcmi- croscopicdiffusionindicesofferdirectsensitivitytopathologicaltissue alterations(Kadenetal.,2016).Whilenotatissuemodel,DKIprovides aspecificmeasureofcellularcompartmentsandmembranesandisrel- ativelyunconfoundedbyconcentrationofmacromolecules,potentially providingamore specificindicatorof tissuepropertiesthanconven- tionalDTI(Jensenetal.,2005).

Intheory,thepartlynon-overlappingassumptionsandbiophysical propertiesofthedifferentdiffusionMRImodelsofferamorecompre- hensiveandcompleteviewofthemanifoldbiologicalprocessesinbrain

development,ageing,anddisorderswhenconsideredjointly.Ingeneral, ourfindingsofhigheragepredictionaccuracywhencombiningdifferent modelssupportsthisview.However,notsurprisingly,therelativelyhigh correlationsandsimilarage-relatedtrajectoriesofseveralofthediffer- entmetricsalsosuggestacertainlevelofredundancy.Furtherstudies areneededtotestthehypothesisthatcombiningvariousdiffusionMRI modelsofbrainmacro-andmicrostructureincreasesthefeasibilityand precisionofmultimodaldata-drivenbrainphenotypingapproaches(e.g.

“fingerprinting”)towardsmorespecificclinicalapplicationsandpredic- tion(Alnæsetal.,2018).Withthisinmind,includingtheadvancedmod- elsmaynotonlyimprovespecificitycomparedtoconventionalDTI,but potentiallyprovidesadditionalinformationrelatedtochangesinmyeli- nationandaxonalrewiring,whilespecificallymodellingmicrostructural featurestypicallyconflatedbyDTI,suchasneuritedensity,axonaldiam- eter,andneuriteorientationdispersion(Alexanderetal.,2019).Further researchisneededtovalidateanddevelopdMRImodelstobetterre- flectthedifferentbiologicalandgeometricalpropertiesofwhitematter.

Ifassumptionsofunderlyingmicrostructurearevalid,theseadvanced modelsrepresentapromisingcontributiontotheinvestigationofbrain developmentandageing,andaberrantbrainbiologyinvariousclinical conditions(Alexanderetal.,2019).

Whileconsideringarangeofdiffusionmodels,itisimportanttonote thateachcomeswithitsrespectivelimitations.NODDIhasbeenpar- ticularlycriticisedinrecentyears,withresearchsuggestingthemodel assumptionsareinvalid(Lampinenetal., 2017).NODDIprovideses- timatesofgeometricparametersonly,withtherebeinganabsenceof anydirectdiffusivityestimation(Jelescuetal.,2015).DKI,likeDTI,is limitedinspecificityasitcanbeaffectedbydifferentfeaturesoftissue microstructure.Thus,thebiophysicalmodelthatrelatesDKIparameters directlytowhitemattermicrostructure(WMTI,Fieremansetal.,2011) wasproposed.However,assumptionsmadeinWMTImaybeoversim- plifying,whichcouldleadtobiasintheestimatedparametersinaddi- tiontoreducedinformationaboutthemicrostructure.WMTIparameter estimationaccuracyisalsosaidtoprogressivelydegradewithhigher orientationdispersion(Jelescuetal.,2015).

TheSMTmcmodelovercomeslimitationsinWMTI(Fieremansetal., 2011)andNODDI(Zhangetal.,2012)asitmakesnoassumptionsabout theneuriteorientationdistribution(Kadenetal.,2016).However,itis limitedbyassumingthattheeffectivetransversediffusivityinsidethe neurites is zero,anapproximationwhich maynotholdforunmyeli- natedaxonsanddendrites(Kadenetal.,2016)duetopossibleneurite undulationonthemicroscopicscale(Nilssonetal.,2012).RSI,likemost diffusion-basedtechniques,suffersfromlowresolutionandmaybestbe utilisedin supplementtohighspatialresolutionsequencesaspartof amultimodal imagingprotocol(Brunsingetal.,2017).Forexample, theDTImodel’slimitationofbeingblind tocrossingandbendingfi- bresmayberesolvedbytheRSImodel’smulti-directionpropertiesand abilitytomeasurediffusionorientationandlengthscale(Whiteetal., 2013).Despitethelimitationsofeachmodel,andpossibleredundancy betweenthem,assessingage-relatedwhitemicrostructuralchangesus- ingacombination ofdiffusionmodelscanbe advantageousin order tozeroinon idiosyncraticneuroanatomicalandmicrostructuralpat- terns(Alnæsetal.,2018).BiophysicalmodelsofWMTIandSMTmc for example, add the possibility for assessing the separate effect of diffusionin intra-andextra-axonalspace(JelescuandBudde,2017; Voldsbekketal.,2020).

Somemethodologicallimitationsmustalsobeaddressed.Onecon- cernisthatofaveragingoverregionsofinterestsandtheentirewhite matterskeleton,whichiscomplicatedbythedirectionandmagnitude ofageassociationsvaryingregionally.Recentfindings(Tønnesenetal., 2020)foundthattheglobalmeanskeletonmodeloutperformedregion ofinterest-basedsingle-metricmodels,providingevidenceforrelevant informationrequiredforbrainagepredictionis capturedat aglobal level.Indeed,previousstudieshavesuggestedthatregionalDTI-based indicesofbrainageingreflectrelativelyglobalprocesses(Penkeetal., 2010; Westlye et al., 2010), which is also supported by a geneti-

Referanser

RELATERTE DOKUMENTER

It was surprising that the infant mortality in Norway was not influenced by World War II, although the same lack of a war effect was observed in Britain during World War I

The Iddefjord granite forms part of the Swedish Bohus batholith and ranges in composition from diorite to granite.. The gran ite consists of 13 individual plutons, and the mechanism

By combining longitudinal MRI-based brain morphometry and brain age estimation using machine learning, we tested the hypothesis that MS patients have higher brain age relative

While brain age prediction is frequently used as a metric of brain pres- ervation in aging (Franke &amp; Gaser, 2019), there is currently no established method for capturing

Based on maritime capacity (especially the power to control the local sea lanes and expressed through strategically positioned monuments), networks and alliances with elites

However, whereas previous studies have documented higher brain age in patients with severe mental disorders, these were based on gray matter models only (5,28,29).. In order to test

Table 7.4Factors that can affect adult growth rates FactorResponseCommentSpeciesLocationReference FoodIncreased growth rate with increased food availabilityDue to spatial

Of course, humans experienced the cosmic space both as a flat plane and as a vertical space, but according to the sources that reflect the Viking period mentality, the vertical