• No results found

07-00862

N/A
N/A
Protected

Academic year: 2022

Share "07-00862"

Copied!
31
0
0

Laster.... (Se fulltekst nå)

Fulltekst

(1)

FFI-rapport 2007/00862

GC-MS investigation of VX stored in a steel container

Aase Mari Opstad

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI) 22 March 2007

(2)

FFI-rapport 2007/00862 105501

ISBN 978-82-464-1176-7

Keywords

Kjemiske stridsmidler VX

GC-MS

Approved by

Bjørn Arne Johnsen Director of Research

2 FFI-rapport 2007/00862

(3)

Sammendrag

En stålcontainer med innhold av det kjemiske stridsmidlet VX har vært lagret i mer enn 40 år ved FFI ved -18 ˚C. Innholdet ble analysert ved hjelp av GC-MS med hensyn på VX og VX nedbrytningsforbindelser i både EI- og CI mode. Prøven inneholdt 74 % VX. En vial med VX som sannsynligvis stammer fra samme VX-container og som har blitt brukt til uttak i mange år, hadde en mengde på 69 % VX. I tillegg til VX, ble femten andre forbindelser identifisert i vialen, mens fjorten av de femten forbindelsene ble identifisert i containeren. Identifikasjonen ble basert på tolking av EI spektra, molekylmasse bestemmelse ved hjelp av CI, retensjons indeks (RI) og beskrivelser og tolkninger i forskjellige publikasjoner. Mengden av de forskjellige nedbrytningsforbindelser er forholdsvis like i vialen og containeren bortsett fra Bis(2- diisopropylaminoethyl) disulfide som har økt fra ca 6 % til 13 % og 1,3-dicyclohexylcarbodiimide som har minket fra 5 % til 2 % i vialen.

FFI-rapport 2007/00862 3

(4)

English summary

A steel container containing the chemical agent VX which as been stored at – 18 ˚C for more than forty years has been analysed for VX and VX degradation compounds with GC-MS both at EI- and CI mode.

The content of VX is 74 % compared to the “daily use” vial which is 69 %. Fifteen VX degradation compounds were identified in the vial, while fourteen compounds in the container. The identification is based on interpretation of EI spectra, provided molecular ion in CI, retention indices (RI) and

publications. The amount of the degradation compounds is almost the same in the two samples except Bis(2-diisopropylaminoethyl) disulfide which decreases from ca 6 % to 13 % and 1,3-

dicyclohexylcarbodiimide which as creases from 5 % to 2 % in the vial.

4 FFI-rapport 2007/00862

(5)

Contents

1 Introduction 7

2 Experimental 8

2.1 Chemicals 8

2.2 Instrumentation 8

3 Results and discussion 8

4 Conclusions 12

References 14 Appendix A MS-spectra 15

FFI-rapport 2007/00862 5

(6)

6 FFI-rapport 2007/00862

(7)

1 Introduction

The organo phosphorous compounds known as V type nerve agents were discovered in the mid-fifties.

The full-scale production of VX (O-Ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothiolate) was commenced in April 1961, but the chemical structure of the compound was not made public until 1972.

At our laboratory, a steel container filled with VX (Figure 1.1), has been stored in a freezer for many years. The exact history of this container is not well known, but it is reason to believe that can be dated back to around 1964. It was probably supplied by US Army Chemical Corps Europe [1]. The primary purpose of this study was to investigate a long time stored VX sample as basic compounds and possible decomposition products using gas chromatograph- mass spectrometer (GC-MS) in electron impact (EI) and chemical ionization (CI) mode. Compound identification was based on information about the

molecular size from CI spectra, MS spectral data and GC retention indices (RI) RI is based on calculation using n-alkanes (C8 –C22) as index standards and GC-columns with stationary phase 95 % dimetyl/5 % phenyl silicone; such as SE-54, CP-Sil 8 and DB-5.

The VX sample has been stored in a closed steel container for more than 40 years at -18 ˚C and has probably been opened only once since it arrived at the institute. A sample from a 5 ml Microflex glass vial with VX (“daily use”) was also analysed. This vial has been stored in a freezer and the VX content is probably taken from the same steel container.

Figure 1.1 Steel container where VX was stored for more than 40 years

FFI-rapport 2007/00862 7

(8)

2 Experimental

2.1 Chemicals

1 mg samples of VX from the steel container and the glass vial were dissolved in 10 ml dichloromethane (CAS No 75-09-2), ultra resi-analyzed from J Baker. Before analyses the VX sample was diluted to a concentration of 50 ng/μl.

2.2 Instrumentation

The analyses was performed with a Fisons MD800 mass spectrometer coupled to a Fisons 8060 gas chromatograph. The GC-column used for the instrument was 30 m x 0.25 mm with 0.25 µm DB-5 MS stationary phase from J&W Inc.

The GC conditions for the analyses were an oven temperature programmed from 40°C (1 min) – 10

°C/min – 280 °C (10 min) and He (grade 6.0) used as carrier gas with a flow rate of 1 ml/min. 1 µl of the sample was injected splitless for 1 minute. Other instrumental parameters used are shown in Table 2.1.

GC: Fisons GC 8060 MS: Fisons MD800/250 Parameter

EI CI Injector temp (°C) 220 220

Transfer line temp (°C) 260 260

Ion Source temp (°C) 190 150

Electron energy (eV) 70 70

Scan range (amu) 35 - 600 100 - 600

Scan time (sec) 0.6 0.6

Reagent gas

Ammonia or

methane Table 2.1 Instrumental parameters used for MS analysis

3 Results and discussion

Figure 3.1 illustrates an EI chromatogram of the VX sample taken from the vial. The total ion chromatogram (TIC) shows several impurities in the VX sample. A total of sixteen compounds were identified in the diluted sample from the vial and fifteen compounds were identified in the container. The compound No 10 was only detected in the vial. No derivatization of the sample was carried out for identifying possible polar degradation products from the stored VX sample. The identification was based on library EI spectra, CI, RI and publications.

8 FFI-rapport 2007/00862

(9)

RT:7,45 - 28,19

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Tim e (m in) 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

1 2

3

4

56

9 10

11

16 15

14

13 12

78

16,97

9,22

20,63 17,33

18,40

22,48

9,46 11,08 17,98 19,72 21,79 24,0325,0426,3927,2528,01

8,46 12,5814,4515,0215,85

N L:

1,09E8 TIC MS 02041102

Figure 3.1 GC chromatogram of VX from vial. The numbers indicate the identified compounds

Compounds No 6 and 10 gave no CI spectra at the expected retention time. The EIMS- and CIMS- spectra from the sixteen compounds are given in Appendix A.

Identification of all the VX degradation products based on only EI is difficult. Many of the degradation products obtained in the chromatogram contain the diisopropylaminoethyl group with fragments dominated by the ion m/z 114, [i-Pr2N=CH2]+. The EI-spectra are almost similar and show little or no molecular ion information for identification of the compounds. Use of CI reagent gases gives information of the molecular ions (M+H)+ and some other characteristics fragment ions [2]. The molecular

information from CI depends also on the molecular behaviour, the reagent gas and the concentration of the compounds. In this study both ammonia and methane were used as reagent gases. Ammonia is a

“softer” reagent gas and will give less fragmentation and more information about the molecular ions than methane. In this experiment ammonia is the best reagent gas (Table 3.1).

The GC retention indices (RI) available in the literature are used to support the identification and confirmation of the suggested components in the VX samples. Compounds No 1, 2, 3, 8, 11-16 have matching RI with literature. Together with EI-spectra matched from library and molecular identification (CI) they were identified as listed in Table 3.1.

In the GC-chromatogram, compound No 6 has a low response and because of the tailing it is difficulty to decide the exact RI. Because of the low concentration, there are also no CI responses with ammonia or methane at the expected retention time and this make the identification uncertain.

FFI-rapport 2007/00862 9

(10)

No Compound CI- gas

Structure CAS # MW RI

1 2-N,N-Diisopropyl aminoethyl-chloride

NH3

N Cl

96-79-7 163 10491 10523 10394

2 O,O-Diethyl

methylphosphonothioate

NH3

CH4

O P

S O

6996-81-2 168 10561

3 2-(Diisopropylamino) ethanethiol

(DESH)

NH3

CH4 N SH

5842-07-9 161 11201 11142 11203

4

* 2-

(Diisopropylamino)ethanet hial

or

2-[isopropyl(prop-1-en-2- yl)amino]ethanethiol

NH3

or

N S

N SH

159 11361

5

*

2-(Diisopropylamino)ethyl methyl sulfide

NH3

N S

63346-69-0 175 12061

6

*

O,S-diethyl

methylphosphonothioate

neg

S P O O

2511-10-6 168 12001 11742 11743 11784 7

*

2-(Diisopropylamino)ethyl vinyl sulfide

NH3

N S

187 12771

8 2-(Diisopropylamino)ethyl ethyl sulfide

NH3

N S

110501-54-7 189 12801 12782

10 FFI-rapport 2007/00862

(11)

No Compound CI- gas

Structure CAS # MW RI

9

*

2-(Diisopropylamino)ethyl isopropylsulfide

NH3

N S

203 13481

10

*

O,O-Diethyl

dimethylmonothionopyrop hosphonate

neg

O P O P

O

O

S 246 14531

11 VX

(O-ethyl S-2-

diisopropylaminoethyl methylphosphonothiolate)

NH3

CH4

N S P O

O

50782-69-9 267 17021 1705/

17132 17133 17214 12 1,3-

dicyclohexylcarbodiimide

NH3 CH4

N C N 538-75-0 206 17341

13 O-Ethyl S-[2-

(diisopropylamino)ethyl]

methylphosphonodithiolate NH3

N S P O

S 161488-46-6 283 17931

17932

14 Bis(2-

diisopropylaminoethyl) sulfide

NH3

S N

N

110501-56-9 288 18311 18362 18554

15 Bis(2-

diisopropylaminoethyl) disulfide

NH3

CH4 S

S

N N

65332-44-7 320 20531 2058/

20652

16 1,9-Bis(diisopropylamino)- 3,4,7-trithianonane

NH3

S S S

N

N

110501-59-2 380 25682

Table 3.1 The names, molecular weights, structures, CAS No and RI related to VX and degradation products identified in the steel container and the daily use vial 1RI calculated in this experiment

2RI from Nato (Canada, Denmark or Finland)

3RI from OPCW

4RI from FFI, MAT95Q

* suggested compound

FFI-rapport 2007/00862 11

(12)

Identification of compounds No 4, 5, 7 and 9 is based on CI spectra and presumptions and discussion in different publications [2-4].

CI spectra of compound No 4 gave 100 % of the protonated molecular ion together with typical

fragmentation ions (m/z 100, 102, 128, 130) when using ammonia as reagent gas [2]. The spectral data is almost equal to what Rohrbaugh has reported. He suggest that the structure may be

HSCH2CH2N(i-Pr)(C[Me]=CH2) [3], while some years later [4] he suggested the structure to be

i-Pr2NCH2CH2CH=S both based on EI and CI mass spectral interpretation and retentions time behaviour.

The compound in our experiment is probably i-Pr2NCH2CH2CH=S because the compound is more similar to the other structures identified.

The compound No 7 is identified as 2-(Diisopropylamino)ethyl vinyl sulphide. This is based on EI spectra, a dominated pseudo-molecular ion in ammonia CI and a comparison with reported results [3;4]..

Both compounds No 5 and 9 are dominated by the pseudo-molecular ions (M+1)+ in ammonia CI mass spectra. Compared to the identification of twenty-three different VX degradation compounds D’Agostino et al. [2] have reported using ammonia as reagent gas, it is probable that compound No 5 is 2-

(Diisopropylamino)ethyl methyl sulfide and compound No 9 is 2-(Diisopropylamino)ethyl isopropylsulfide.

Compound No 10 (O,O-Diethyl dimethylmonothionopyrophosphonate) is based on the EI spectra and publications [4;5]. This compound is a decomposition product in VX samples. The compound is only detected in the “daily use” vial (Table 4.1) at EI mode.

4 Conclusions

In addition to VX, fifteen (fourteen from the container) different compounds were identify based on GC-MS (EI and CI). A large number of compounds in the samples with mass 114 which were not identified. Table 4.1 gives a list of the amount of the different compounds identified in the samples.

Compound

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Vial, % 0.3 0.3 9.8 0.8 <0.1 <0.1 0.2 0.1 0.2 <0.1 69 2 0.2 2.4 13.5 0.5 Container, % 0.5 0.4 9.2 0.5 <0.1 <0.1 0.3 0.2 <0.1 ND 74 5 0.2 1.9 6.3 0.1 Table 4.1 The percent amount of each compound in the container and the “daily use” VX vial

ND = not detected

After more than 40 years storage at – 18 ˚C in a steel container the contents of VX is 74 % compared to the “daily use” vial which is 69 %. The amount of the degradation compounds are comparable in the two

12 FFI-rapport 2007/00862

(13)

samples, except for Bis(2-diisopropylaminoethyl) disulfide (No 15) which had an increase from about 6 % in the container to 13 % in the vial. Compound No 10 is observed only in the vial

Compound No 12, 1,3-dicyclohexylcarbodiimide, is a stabilizer commonly added to VX [2]. The percent amount of carbodiimide has decreased in the vial compared to the container. Two degradation compounds from the carbodiimide were also identified. N,N’-dicyclohexylthiourea were detected in both samples while 1,3-dicyclohexylurea was detected only in the vial.

FFI-rapport 2007/00862 13

(14)

References

[1] J. A. B. Barstad and F. Fonnum, "Technical note on reactivation and ageing of acetylcholinesterase inhibited by VX,"Nov.1964.

[2] P. A. D'Agostino, L. R. Provost, and J. Visentini, "Analysis of O-ethyl S-(2-diisopropylamino)ethyl) methylphosphonothiolate (VX) by capillary column gas chromatography-mass spectrometry,"

Journal of Chromatography, vol. 402, pp. 221-232, 1987.

[3] D. K. Rohrbaugh, "Characterization of equimolar VX-water reaction product by gas

chromatography-mass spectrometry," Journal of Chromatography, vol. 809, pp. 131-139, 1998.

[4] D. K. Rohrbaugh, "Methanol chemical ionization quadrupol ion mass spectrometry of O-ethyl S-(2- (diisopropylamino)ethyl) methylphosphonothiolate (VX) and its degradation products," Journal of Chromatography, vol. 893, no. 2, pp. 393-400, 2000.

[5] C. A. Boulet and P. A. D'Agostino, "Analysis of dimethylpyrophophonate decomposition products of VX by GC-MS/MS and 31P NMR," Phosphorus, Sulfur, and Silicon, vol. 104, pp. 93-101, 1995.

14 FFI-rapport 2007/00862

(15)

Appendix A MS-spectra

There is a difference in about 0.3 min between all the EI- and CI retention times because the column has been cut during the analysis.

1) 2-N,N-Diisopropyl aminoethyl-chloride (MW 163), EIMS (upper) CIMS-ammonia (lower)

02053005 #538RT:7,88AV:1SB:23 7,64-7,74, 8,12-8,23N L:6,25E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

164

130 166

102

128

126 136 180

105 115

02041102 #560 RT:8,11 AV:1 SB:15 7,98-8,06, 8,32-8,37 NL:1,71E5 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

106

114

148

108 72

43

41 70

44 56 150 163

63

104 128

39 49 54 58 65 73788084 8692 98 115122 129 132 146 151 165166

FFI-rapport 2007/00862 15

(16)

2) O,O-Diethyl methylphosphonothioate (MW 168)

EIMS (upper) CIMS-ammonia (lower right) CIMS-methane (lower left)

02053005 #548RT:7,98AV:1SB:23 7,64-7,74, 8,12-8,23NL:6,88E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

169

186

137

170171

203

130 154 180

105 128

102 108 111

3105 #548RT:7,98AV:1SB:33 7,58-7,75, 8,09-8,23N L:5,29E3 0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210 220

m /z 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

0 169

141

109 168

124

123 127 170 197

114 129 137

107 142

102 113 119122 162165 171175176 185 190194 199200205 212

02041102 #570-574 RT:8,21-8,25 AV:5 SB:23 7,90-8,02, 8,32-8,41 NL:4,78E4 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

168

79

96 95

124

80

107

47 97

63 113

78 123

65 81 45 77

43 57 91 169

140

106 125

56 71 114

41 82

99 148

55 85 127 136 153 167 171 177

16 FFI-rapport 2007/00862

(17)

3) 2-(Diisopropylamino) ethanethiol (MW 161)

EIMS (upper) CIMS-ammonia (lower right) CIMS-methane (lower left)

02053005 #647RT:8,97AV:1SB:23 7,64-7,74, 8,12-8,23N L:6,10E4 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

102

162

128

130

103 160163

164

114116 131

02053105 #646RT:8,96AV:1SB:33 7,58-7,75, 8,09-8,23NL:2,25E4 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210 220

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

128

162

102

160 146

115 129

120 130

103111112 118 127 134 142 147 163 174176

02041102 #670 RT:9,21 AV:1 SB:13 9,11-9,17, 9,31-9,36 NL:2,90E6 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

44

61 86 43

41 58

56 115 70

45 84 118 146

39 54 68 73 82 87 98 102 112 127 128 144 159 161 162 191 208

FFI-rapport 2007/00862 17

(18)

4) 2-(Diisopropylamino)ethanethiol (MW 159) EIMS (upper) CIMS-ammonia (lower)

02041102 #694 RT:9,45 AV:1 SB:11 9,39-9,43, 9,51-9,56 NL:7,99E4 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

144

102

70

84

98

42

112 159

41

58 59 56 61

43 71

39 55 145

44454954 65 68 72 82 88 103104 114116 126 142 146 157 160

02053005 #670RT:9,20 AV:1SB:23 7,64-7,74, 8,12-8,23 NL:6,85E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

102

160

128130

158 161 103

162

116 126 131 156 170

113 138140

18 FFI-rapport 2007/00862

(19)

5) 2-(Diisopropylamino)ethyl methyl sulfide (MW 175) EIMS (upper) CIMS-ammonia (lower)

02041205 #807 RT:10,58 AV:1 SB:10 10,53-10,56, 10,62-10,67 NL:8,25E3 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

75

86 41 44

49 55

115 80

56 70

40 47 51 6163 84 87 96 105 107 125128

35 59 69 77 88 90 122 137 140 149152 153

02053005 #780-782RT:10,30-10,32AV:3 SB:13 10,22-10,28, 10,39-10,44 NL:8,87E2 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

176

102 105

112

130

114 142

136 154

117 122 127 132 137 144147148152 157158 168 172 177178 189 198

FFI-rapport 2007/00862 19

(20)

6) O,S-diethyl methylphosphonothioate (MW 168) EIMS

02041102 #827 RT:10,78 AV:1 SB:99 9,68-10,17, 12,14-12,62 NL:6,50E3 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

79

108

80

95

47 140

168

96

62 81 93 107

60

48 51 64 97 109 124

46 75 77 86 98 112 128

35 45 54 91 113 133 142 149 170

20 FFI-rapport 2007/00862

(21)

7) 2-(Diisopropylamino)ethyl vinyl sulfide (MW 187) EIMS (upper) CIMS-ammonia (lower)

02041102 #906 RT:11,57 AV:1 SB:16 11,45-11,54, 11,61-11,66 NL:1,85E5 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

87

43

41 56

70 115

44 45 59

85

53 73 84

39 47 60 68 88 98 102 112 128 144 145 187

02053005 #880RT:11,30AV:1SB:13 10,22-10,28, 10,39-10,44NL:6,40E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

188

102 128 189190

130 136 150

114

112 122124 137 156

105

FFI-rapport 2007/00862 21

(22)

8) 2-(Diisopropylamino)ethyl ethyl sulfide (MW 189) EIMS (upper) CIMS-ammonia (lower)

02053005 #885RT:11,35AV:1 SB:13 10,22-10,28, 10,39-10,44NL:2,39E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

190

102

191

125128 152 188 192

110111 119 136140 156160 172

02041102 #912 RT:11,63 AV:1 SB:27 11,28-11,42, 11,73-11,84 NL:9,34E4 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

89

43 5661

41 44 115

70 73 86

45 128

39 47 69 84 97 98 112 125 130 144 151 158 168 171 189

22 FFI-rapport 2007/00862

(23)

9) 2-(Diisopropylamino)ethyl isopropylsulfide (MW 203) EIMS (upper) CIMS-ammonia (lower)

02041205 #1008 RT:12,59 AV:1 SB:26 12,43-12,55, 12,67-12,79 NL:1,35E5 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200 220

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

43

44 103

41 86 115

56 70

58 61 73 84 87 104 188 203

39 45 54 68 76 88 102 112 116 128 144 158

02053005 #981RT:12,31 AV:1 SB:13 10,22-10,28, 10,39-10,44NL:2,30E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

204

102

130

128

112 142 206

105 117

131 153

134 152 155 162 172 196 207 222 237

FFI-rapport 2007/00862 23

(24)

10) O,O-Diethyl dimethylmonothionopyrophosphonate (MW 246) EIMS

02041205 #1149 RT:14,00 AV:1 SB:47 13,71-13,93, 14,33-14,56 NL:5,90E3 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200 220 240 260

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

190

79 97 95

187 159

163 218

47

63 157

125 143

80 94 202

77

124 67 173

42 50 81 92 108 123 246

60 68 112

51 192

36 53 76 89 101 119 135 156 169 174

237

24 FFI-rapport 2007/00862

(25)

11) VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) (MW 267) EIMS (upper) CIMS-ammonia (under right) CIMS-methane (lower left)

02041102 #1443 RT:16,94 AV:1 SB:15 16,84-16,91, 17,08-17,14 NL:3,24E6 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200 220 240 260 280 300

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

127 70 79 115

84 107 112 167

43 139

44 56 85

41 47 61 86 98 116 128 144 180 224 252

02053005 #1416RT:16,66AV:1SB:13 10,22-10,28, 10,39-10,44NL:4,77E5 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 120 140 160 180 200 220 240 260 280 300 320 340

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

268

128

102

130 164

126 269 162

166 270

289

114 146 160

103

02053105 #1417RT:16,67AV:1SB:17 8,93-9,02, 9,13-9,19NL:1,38E5 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 120 140 160 180 200 220 240 260 280 300

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

268

128

127

252

266

269 115 129

167 270

107112 139 180 224 253

FFI-rapport 2007/00862 25

(26)

12) 1,3-dicyclohexylcarbodiimide (mw 206)

EIMS (upper) CIMS-ammonia (lower right) CIMS-methane (lower left)

02053005 #1452R T:17,02AV:1SB:13 10,22-10,28, 10,39-10,44NL:3,02E4 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 120 140 160 180 200 220 240 260 280 300 320 340

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

207

126

102

128 208

112 130

145 145

117 141 162

109

053105 #1452RT:17,02AV:1SB:17 8,93-9,02, 9,13-9,19NL:2,92E3 {0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

100 125

205 207 124

126 153 164

176 208

155 163 169 122

110 119 132 152 177 183 195 204 209 213 222 227 230

106

02041102 #1480 RT:17,31 AV:1 SB:9 17,24-17,28, 17,38-17,41 NL:4,77E5 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200 220 240

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

55

83

81 163

43 41

124 125

164 67

54 96 177

56 95

53 151

68 69 84 97 109 123 149 152 165 178 191 205 206

57 70 98 110 126137

44 58 94 138 153 166 179 192 207 212224

26 FFI-rapport 2007/00862

(27)

13) O-Ethyl S-[2-(diisopropylamino)ethyl] methylphosphonodithiolate (MW 283) EIMS (upper) CIMS-ammonia (lower)

02041205 #1547 RT:17,98 AV:1 SB:12 17,90-17,95, 18,04-18,09 NL:1,74E5 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200 220 240 260 280 300

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

95 115

4344 70 84 123127 155

41 56 69 85 112

98 128

55 83 102 144 158 183

FFI-rapport 2007/00862 27

(28)

02053005 #1517RT:17,67AV:1SB:13 10,22-10,28, 10,39-10,44NL:1,76E3 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 120 140 160 180 200 220 240 260 280 300 320 340

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

102

128 126

130

112

284 106 131

117

142 172

162 206

141

161 168 190 225

138 152

229 180 197

14) Bis(2-diisopropylaminoethyl) sulfide (MW 288) EIMS (upper) CIMS-ammonia (lower)

02041102 #1588 RT:18,39 AV:1 SB:10 18,30-18,35, 18,48-18,51 NL:1,25E6 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

127

44 43 70 128

86 102 144 160

58 84 161

45 188 208 273 286

28 FFI-rapport 2007/00862

(29)

02053005 #1560 RT:18,10 AV:1SB:13 10,22-10,28, 10,39-10,44 NL:1,22E4 T:{0;0} + c CI det=500,00 Full m s [ 100,00-600,00]

100 120 140 160 180 200 220 240 260 280 300 320 340

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

102

128

289

130

290

103 116 126 162

160

131 291

112 117 141150 176 188

15) Bis(2-diisopropylaminoethyl) disulfide (MW 320)

EIMS (upper) CIMS-ammonia (lower right) CIMS-methane (lower left)

02041102 #1809-1811 RT:20,60-20,62 AV:3 SB:10 20,51-20,55, 20,71-20,75 NL:2,44E6 T:{0;0} + c EI det=500,00 Full m s [ 35,00-600,00]

50 100 150 200 250 300 350

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

114

72

115

144

43 44 70 193

5661 8488102 128 158160162 194

45 177 220 247

FFI-rapport 2007/00862 29

(30)

02053005 #1781RT:20,31AV:1SB:13 10,22-10,28, 10,39-10,44NL:1,49E5 T:{0;0} + c C I det=500,00 Full m s [ 100,00-600,00]

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

m /z 0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Relative Abundance

128

102

162

321

130 160

163 322 103

114 131 158 323

781RT:20,31AV:1SB:35 17,83-18,03, 18,21-18,34NL:4,50E4 det=500,00 Full m s [ 100,00-600,00]

120 140 160 180 200 220 240 260 280 300 320 340 360 380

m /z 114

160 193

128

144

321 162

115

127 158

195 319

129 322

118

16) 1,9-Bis(diisopropylamino)- 3,4,7-trithianonane (MW 380) EIMS (upper) CIMS-ammonia (lower)

30 FFI-rapport 2007/00862

Referanser

RELATERTE DOKUMENTER

With the increasing popularity of electrospray-mass spectrometry (ESI-MS) as an analytical method for chemical warfare agents and their decomposition products, it was of interest to

tech level wear Size of R&amp;D University SectorQualof University Research chinqualof uniresearch Hiring soldiersPromoting Soldiers..

The primary objective of this small-scale study was to investigate the occurrence of enteropathogens in sewage (municipal wastewater) in Norway using the commercially available

The importance of basic psychological need satisfaction for function and well-being underlie the current aim to investigate basic psychological need satisfaction as a

Purpose – The purpose of this study is to investigate how the positioning of textual and pictorial design elements on a package affects visual attention (detection time) toward

The primary purpose of this study is to improve the as- sessment and treatment of agitation in persons with de- mentia by examining the effect and implementation of the

The primary purpose of this study is to improve the as- sessment and treatment of agitation in persons with de- mentia by examining the effect and implementation of the

The purpose of this study was, therefore, to investigate how long-term live-storage of mature Atlantic cod in the absence of feed (79 days) affects the onset and development of