CHAPTER 5: CHARACTERIZATION AND DISCUSSIONS
5.4 Conclusions
75
more high specific capacity. So did the same process for deposition manganese oxide as the first time. But this time only chose 10 cycles. In figure 5.29, the blue curve was the C-V curves after second deposition. The red one was result after the first deposition. And there have an obvious decrease about the specific capacitance. It was not in accordance with our inference. So in order to find the reason, we used SEM to check. Figure 5-23 was the AAO surface topography after second deposition manganese oxide. Too much manganese oxide would form plates or plate like objects on the top of porous structure.
And this plate like object would cover the porous structure and decreased the specific area during the reaction. The electrolyte was difficult to go in and out of the nano-holes during the reaction process. So from this result we also can get that the nano-holes on the AAO substrate was useful for store energy.
76
REFERENCES
[1] W. Sun, R. Zheng, and X. Chen, “Three Dimensional MEMS Supercapacitor Fabricated by DRIE on Silicon Substrate,” vol. 3, no. 10, pp. 35–38, 2009.
[2] P. Simon, “Materials for Electrochemical Capacitors,” Nat. Mater., vol. 7, pp.
845–854, 2008.
[3] A. Burke, “Ultracapacitors: Why, how, and where is the technology,” J. Power Sources, vol. 91, no. 1, pp. 37–50, 2000.
[4] D. A. Brevnov and T. S. Olson, “Double-layer capacitors composed of
interconnected silver particles and with a high-frequency response,” Electrochim.
Acta, vol. 51, no. 7, pp. 1172–1177, 2006.
[5] L. C. Haspert, P. Banerjee, I. Perez, S. B. Lee, and G. W. Rubloff, “Electrostatic Nano-Supercapacitors for Energy Storage,” Mems, p. 133, 2009.
[6] H. Y. Lee and J. B. Goodenough, “Supercapacitor Behavior with KCl Electrolyte,”
J. Solid State Chem., vol. 144, pp. 220–223, 1999.
[7] B. Conway, V. Birss, and J. Wojtowicz, “The role and utilization of
pseudocapacitance for energy storage by supercapacitors,” J. Power Sources, vol.
66, no. 1–2, pp. 1–14, 1997.
[8] H. Y. Lee, V. Manivannan, and J. B. Goodenough, “Electrochemical capacitors with KCl electrolyte,” Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem., vol. 2, no. 11–13, pp. 565–577, 1999.
[9] H. Y. Lee and J. B. Goodenough, “Amorphous V 2 O 5 / carbon composites as electrochemical supercapacitor electrodes,” Solid State Ionics, vol. 153, pp. 833–
841, 2002.
[10] B. E. Conway and W. G. Pell, “Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices,” J. Solid State Electrochem., vol. 7, no. 9, pp. 637–644, 2003.
[11] R. K�tz, M. Carlen, R. Kötz, M. Carlen, R. Kötz, M. Carlen, and M. Carlen,
“Principles and applications of electrochemical capacitors,” Electrochim. Acta, vol. 45, no. 15–16, pp. 2483–2498, 2000.
[12] A. Celzard, F. Collas, J. F. Mar??ch??, G. Furdin, and I. Rey, “Porous electrodes-based double-layer supercapacitors: Pore structure versus series resistance,” J.
Power Sources, vol. 108, no. 1–2, pp. 153–162, 2002.
[13] D. Qu, D. Qu, H. Shi, and H. Shi, “Studies of activated carbons used in double-layer capacitors,” Construction, pp. 99–107, 1998.
[14] Y. S. Chen, C. C. Hu, and Y. T. Wu, “Capacitive and textural characteristics of manganese oxide prepared by anodic deposition: Effects of manganese precursors and oxide thickness,” J. Solid State Electrochem., vol. 8, no. 7, pp. 467–473, 2004.
[15] S. J. Garcia-Vergara, L. Iglesias-Rubianes, C. E. Blanco-Pinzon, P. Skeldon, G. E.
Thompson, and P. Campestrini, “Mechanical instability and pore generation in anodic alumina,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 462, no. January, pp.
2345–2358, 2006.
[16] B. Jin, F. Gao, Y.-F. Zhu, X.-Y. Lang, G.-F. Han, W. Gao, Z. Wen, M. Zhao, J.-C.
Li, and Q. Jiang, “Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-ion Batteries,” Sci. Rep., vol. 6, no.
77 October 2015, p. 19317, 2016.
[17] A. Bajolet, J. C. Giraudin, C. Rossato, L. Pinzelli, S. Bruyère, S. Crémer, T.
Jagueneau, P. Delpech, L. Montès, and G. Ghibaudo, “Three-dimensional 35 nF/mm2 MIM capacitors integrated in BiCMOS technology,” Proc. ESSDERC 2005 35th Eur. Solid-State Device Res. Conf., vol. 2005, no. 1, pp. 121–124, 2005.
[18] M. Halper and J. Ellenbogen, “Supercapacitors: A brief overview,” Rep. No. MP 05W0000272, …, no. March, pp. Report No. MP 05W0000272, 1–29, 2006.
[19] L. Yuan, X. H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. Hu, Y. Tong, J. Zhou, and Z. L. Wang, “Flexible solid-state
supercapacitors based on carbon nanoparticles/MnO 2 nanorods hybrid structure,”
ACS Nano, vol. 6, no. 1, pp. 656–661, 2012.
[20] C. Merlet, B. Rotenberg, P. A. Madden, P.-L. Taberna, P. Simon, Y. Gogotsi, and M. Salanne, “On the molecular origin of supercapacitance in nanoporous carbon electrodes.,” Nat. Mater., vol. 11, no. 4, pp. 306–310, 2012.
[21] Y. Huang and J. B. Goodenough, “High-Rate LiFePO Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers High-Rate LiFePO 4 Lithium Rechargeable Battery Promoted by Electrochemically Active Polymers,”
no. 3, pp. 7237–7241, 2008.
[22] P. Banerjee, I. Perez, L. Henn-lecordier, S. B. Lee, and G. W. Rubloff,
“Nanotubular metal–insulator–metal capacitor arrays for energy storage,” Nat.
Nanotechnol., vol. 4, no. March, pp. 292–296, 2009.
[23] L. Iglesias, V. Vega, J. García, B. Hernando, and V. M. Prida, “Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminum oxides for energy harvesting applications,” Front. Phys., vol. 3, no.
March, pp. 1–10, 2015.
[24] J. H. Klootwijk, K. B. Jinesh, W. Dekkers, J. F. Verhoeven, F. C. van den Heuvel, H. D. Kim, D. Blin, M. A. Verheijen, R. G. R. Weemaes, M. Kaiser, J. J. M.
Ruigrok, and F. Roozeboom, “Ultrahigh capacitance density for multiple ALD-Grown MIM capacitor stacks in 3-D silicon,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 740–742, 2008.
[25] L. Cheng, H. Q. Li, and Y. Y. Xia, “A hybrid nonaqueous electrochemical
supercapacitor using nano-sized iron oxyhydroxide and activated carbon,” J. Solid State Electrochem., vol. 10, no. 6, pp. 405–410, 2006.
[26] P. V. D. Physical and V. Deposition, “2. Deposition Methods 2.1.,” pp. 9–53.
[27] M. J. Biercuk, D. J. Monsma, C. M. Marcus, J. S. Backer, and R. G. Gordon,
“Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications,” Appl. Phys. Lett., vol. 83, no. 12, pp. 2405–2407, 2003.
[28] H. Van Bui, Atomic layer deposition of TiN films Growth and electrical behavior down to sub-nanometer scale. 2013.
[29] J. W. Elam, J. A. Libera, M. J. Pellin, A. V. Zinovev, J. P. Greene, and J. A.
Nolen, “Atomic layer deposition of W on nanoporous carbon aerogels,” Appl.
Phys. Lett., vol. 89, no. 5, pp. 1–4, 2006.
[30] J. S. King, D. Heineman, E. Graugnard, and C. J. Summers, “Atomic layer deposition in porous structures: 3D photonic crystals,” Appl. Surf. Sci., vol. 244, no. 1–4, pp. 511–516, 2005.
78 [31] “LOw ALD.pdf.” .
[32] “A Low-Temperature Atomic Layer Deposition Liftoff Method for
Microelectronic and Nanoelectronic Applications M. J. Biercuk * , D. J. Monsma, C. M. Marcus,.”
[33] S. M. George, “Atomic layer deposition: An overview,” Chem. Rev., vol. 110, no.
1, pp. 111–131, 2010.
[34] S. H. Sun, G. W. Meng, G. X. Zhang, T. Gao, B. Y. Geng, L. D. Zhang, and J.
Zuo, “Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders,” Chem. Phys. Lett., vol. 376, no. 1–2, pp. 103–107, 2003.
[35] K. M. Alam, A. P. Singh, S. C. Bodepudi, and S. Pramanik, “Fabrication of hexagonally ordered nanopores in anodic alumina: An alternative pretreatment,”
Surf. Sci., vol. 605, no. 3–4, pp. 441–449, 2011.
[36] P. Banerjee and A. Ditali, “Uniqueness in activation energy and
charge-to-breakdown of highly asymmetrical DRAM Al2O3 cell capacitors,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 574–576, 2004.
[37] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, “Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization,” Adv. Mater., vol. 17, no. 17, pp. 2115–2119, 2005.
[38] A. K. Kasi, J. K. Kasi, N. Afzulpurkar, E. Bohez, A. Tuantranont, and B.
Mahaisavariya, “RETRACTED ARTICLE: Fabrication of anodic aluminum oxide (AAO) nano-porous membrane on both sides of aluminum sheet,” ICMEE 2010 - 2010 2nd Int. Conf. Mech. Electron. Eng. Proc., vol. 2, no. Icmee, pp. 122–126, 2010.
[39] G. Hu, H. Zhang, W. Di, and T. Zhao, “Study on Wet Etching of AAO Template,”
Carbon Nanotub., vol. 1, no. 2, pp. 78–82, 2004.
[40] M. Kemell, M. Ritala, M. Leskel??, E. Ossei-Wusu, J. Carstensen, and H. F??ll,
“Si/Al2O3/ZnO:Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition,” Microelectron. Eng., vol. 84, no. 2, pp. 313–318, 2007.
[41] G. Zhang, H. Wu, C. Chen, T. Wang, W. Wu, J. Yue, and C. Liu, “Transparent nanotubular capacitors based on transplanted anodic aluminum oxide templates,”
ACS Appl. Mater. Interfaces, vol. 7, no. 9, pp. 5522–5527, 2015.
[42] W. Lee and S.-J. S. S. Park, “Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures,” Chem. Rev., vol. 114, no. 15, pp. 7487–7556, 2014.
[43] F. Li, L. Zhang, and R. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater., vol. 10, no. 9, pp. 2470–2480, 1998.
[44] C. Lu and Z. Chen, “Anodic Aluminum Oxide-Based Nanostructures and
Devices,” Encyclopedia of Nanoscience and Nanotechnology. pp. 235–259, 2011.
[45] I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S. J. Son, S. B. Lee, and G.
W. Rubloff, “TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures,” Small, vol. 4, no. 8, pp. 1223–1232, 2008.
[46] H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address,
“1996_Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an